搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷对碳纳米管摩擦与运动行为的影响

李瑞 孙丹海

引用本文:
Citation:

缺陷对碳纳米管摩擦与运动行为的影响

李瑞, 孙丹海

Influence of defects on friction and motion of carbon nanotube

Li Rui, Sun Dai-Hai
PDF
导出引用
  • 本文采用分子动力学方法研究了公度、无公度情况下含空位、Stone-Thrower-Wales(STW)型缺陷的单壁碳纳米管(SWCNT)在石墨基底上的摩擦与运动行为. 结果表明,公度时缺陷的存在导致了界面局部无公度,减小了摩擦. 随着碳纳米管底部STW缺陷的增多,碳纳米管变形增大,侧向力波动的幅值减小,局部无公度性增强,摩擦减小. 含空位缺陷的碳纳米管所受的摩擦力明显大于含STW 缺陷的碳纳米管,原因在于含空位缺陷的碳纳米管在运动的后期出现了明显的翻转现象,增大了能量耗散. 无公度时,碳纳米管与石墨基底间的摩擦力很小,缺陷对其摩擦力影响不大,原因在于无论是否含有缺陷,碳纳米管与石墨组成的界面的无公度性差别不大.
    Motion and friction of carbon nanotubes with vacancy defects or Stone-Thower-Wales (STW) defects on them are investigated in commensurate states and incommensurate states by molecular dynamics simulation. Results show that defects lead to incommensurate state in part of interfaces, thus decreasing the friction. More amount of STW defects would cause larger distortion of carbon nanotube, smaller lateral force amplitude, more local incommensurate state of interfaces and smaller friction. The friction of carbon nanotube with vacancy defects is obviously larger than carbon nanotube with STW defects. The reason is that the carbon nanotube with vacancy defects will change its motion in later period of motion, which can increase energy dissipation. Defects barely have influence on the friction of carbon nanotubes in incommensurate state because interfaces are all in incommensurate state whether they are having defects or not.
    • 基金项目: 国家自然科学基金(批准号:51105028)、教育部高校博士点专项基金(批准号:20110006120011)和中央高校基本业务费(批准号:FRF-TP-12-051A)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51105028), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110006120011), the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-12-051A).
    [1]

    Scarselli M, Castrucci P, De Crescenzi M 2012 Phys. Condes. Matter. 24 313202

    [2]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 115429

    [3]

    Jie H, Globus A, Jaffe R, Deardorff G 1997 Nanotechnology 8(3) 95

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Filrsov A A 2004 Science 306 666

    [5]

    Chen X, Zhu J, Xi Q, Yang W S 2012 Sens. Actuator B-Chem. 161 648

    [6]

    Yu D S, Dai L M 2010 Phys. Chem. Lett. 1 467

    [7]

    Falvo M R, Taylor R M, Helser A, Chi V, Brooks F P, Jr. Washburn S, Superfine R 1999 Nature 397 236

    [8]

    Buldum A, Lu J P 1999 Phys. Rev. Lett. 83 5050

    [9]

    Buldum A, Lu J P 2003 Appl. Surf. Sci. 219 123

    [10]

    Schall J D, Brenner D W 2000 Mol. Simul. 25 73

    [11]

    Li R, Hu Y Z, Wang H, Zhang Y J 2006 Acta Phys. Sin. 55 5455 ( in Chinese) [李瑞, 胡元中, 王慧, 张宇军 2006 物理学报 55 5455]

    [12]

    Li W Z, Yan X, Kempa K, Ren Z F, Giersig M 2007 Carbon 45 2938

    [13]

    Luo Y P, Tien L G, Tsai C H, Lee M H, Li F Y 2011 Chin. Phys. B 20 017302

    [14]

    Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501

    [15]

    Troya D, Mielke S L, Schatz G C 2003 Chem. Phys. Lett. 382 133

    [16]

    Jiang H, Feng X Q, Huang Y, Hwang K C, Wu P D 2004 Comput. Methods Appl. Mech. Eng. 193 3419

    [17]

    Lee N J, Welch C R 2010 DoD High Performance Computing Modernization Program Users Group Conference Schaumburg, IL, USA, June 14-17, 2010 p238

    [18]

    Liu P, Zhang Y W 2010 J. Phys. D: Appl. Phys. 43 1

    [19]

    Liu P, Zhang Y W 2011 Carbon 49 3687

    [20]

    Zhou L G, Shi S Q 2003 Carbon 41 613

    [21]

    Ijas M, Havu P, Harju A 2013 Phys. Rev. B 87 205430

    [22]

    Yang S H, Yu S Y, Cho M 2013 Carbon 55 133

    [23]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condes. Matter. 14 783

    [24]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

  • [1]

    Scarselli M, Castrucci P, De Crescenzi M 2012 Phys. Condes. Matter. 24 313202

    [2]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 115429

    [3]

    Jie H, Globus A, Jaffe R, Deardorff G 1997 Nanotechnology 8(3) 95

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Filrsov A A 2004 Science 306 666

    [5]

    Chen X, Zhu J, Xi Q, Yang W S 2012 Sens. Actuator B-Chem. 161 648

    [6]

    Yu D S, Dai L M 2010 Phys. Chem. Lett. 1 467

    [7]

    Falvo M R, Taylor R M, Helser A, Chi V, Brooks F P, Jr. Washburn S, Superfine R 1999 Nature 397 236

    [8]

    Buldum A, Lu J P 1999 Phys. Rev. Lett. 83 5050

    [9]

    Buldum A, Lu J P 2003 Appl. Surf. Sci. 219 123

    [10]

    Schall J D, Brenner D W 2000 Mol. Simul. 25 73

    [11]

    Li R, Hu Y Z, Wang H, Zhang Y J 2006 Acta Phys. Sin. 55 5455 ( in Chinese) [李瑞, 胡元中, 王慧, 张宇军 2006 物理学报 55 5455]

    [12]

    Li W Z, Yan X, Kempa K, Ren Z F, Giersig M 2007 Carbon 45 2938

    [13]

    Luo Y P, Tien L G, Tsai C H, Lee M H, Li F Y 2011 Chin. Phys. B 20 017302

    [14]

    Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501

    [15]

    Troya D, Mielke S L, Schatz G C 2003 Chem. Phys. Lett. 382 133

    [16]

    Jiang H, Feng X Q, Huang Y, Hwang K C, Wu P D 2004 Comput. Methods Appl. Mech. Eng. 193 3419

    [17]

    Lee N J, Welch C R 2010 DoD High Performance Computing Modernization Program Users Group Conference Schaumburg, IL, USA, June 14-17, 2010 p238

    [18]

    Liu P, Zhang Y W 2010 J. Phys. D: Appl. Phys. 43 1

    [19]

    Liu P, Zhang Y W 2011 Carbon 49 3687

    [20]

    Zhou L G, Shi S Q 2003 Carbon 41 613

    [21]

    Ijas M, Havu P, Harju A 2013 Phys. Rev. B 87 205430

    [22]

    Yang S H, Yu S Y, Cho M 2013 Carbon 55 133

    [23]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condes. Matter. 14 783

    [24]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

  • [1] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [2] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为. 物理学报, 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [3] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2. 物理学报, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [4] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟. 物理学报, 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [5] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [6] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究. 物理学报, 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [7] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响. 物理学报, 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [8] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [9] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响. 物理学报, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [10] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象. 物理学报, 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [11] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [12] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [13] 杨阳, 王苍龙, 段文山, 石玉仁, 陈建敏. 基底势函数的无序性对静摩擦力的影响. 物理学报, 2012, 61(13): 130501. doi: 10.7498/aps.61.130501
    [14] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [15] 李瑞, 胡元中, 王慧. Si表面间水平碳纳米管束的分子动力学模拟研究. 物理学报, 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [16] 龚中良, 黄 平. 界面摩擦过程非连续能量耗散机理研究. 物理学报, 2008, 57(4): 2358-2362. doi: 10.7498/aps.57.2358
    [17] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [18] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响. 物理学报, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [19] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [20] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究. 物理学报, 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
计量
  • 文章访问数:  3812
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-24
  • 修回日期:  2013-11-13
  • 刊出日期:  2014-03-05

缺陷对碳纳米管摩擦与运动行为的影响

  • 1. 北京科技大学机械工程学院, 北京 100083
    基金项目: 国家自然科学基金(批准号:51105028)、教育部高校博士点专项基金(批准号:20110006120011)和中央高校基本业务费(批准号:FRF-TP-12-051A)资助的课题.

摘要: 本文采用分子动力学方法研究了公度、无公度情况下含空位、Stone-Thrower-Wales(STW)型缺陷的单壁碳纳米管(SWCNT)在石墨基底上的摩擦与运动行为. 结果表明,公度时缺陷的存在导致了界面局部无公度,减小了摩擦. 随着碳纳米管底部STW缺陷的增多,碳纳米管变形增大,侧向力波动的幅值减小,局部无公度性增强,摩擦减小. 含空位缺陷的碳纳米管所受的摩擦力明显大于含STW 缺陷的碳纳米管,原因在于含空位缺陷的碳纳米管在运动的后期出现了明显的翻转现象,增大了能量耗散. 无公度时,碳纳米管与石墨基底间的摩擦力很小,缺陷对其摩擦力影响不大,原因在于无论是否含有缺陷,碳纳米管与石墨组成的界面的无公度性差别不大.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回