搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于羟基化Janus碳纳米管的纳米流体导热特性研究

李康睿 王军 夏国栋

引用本文:
Citation:

基于羟基化Janus碳纳米管的纳米流体导热特性研究

李康睿, 王军, 夏国栋

Thermal conductivity of Janus nanofluids with hydroxylated carbon nanotubes

LI Kang-rui, WANG Jun, XIA Guo-dong
PDF
导出引用
  • 碳纳米管本身所具有的卓越导热性能,使得基于碳纳米管所制备的纳米流体也同样具有较高的热导率,同时在碳纳米管表面添加官能团能够有效增强水/碳纳米管纳米流体的稳定性。本文将羟基化碳纳米管构建成为Janus颗粒,基于平衡分子动力学模拟方法,计算了基于羟基化碳纳米管的纳米流体热导率,并对其导热机理进行分析。计算结果表明,在基液吸附层密度增长、颗粒布朗运动增强以及界面热阻降低等因素的共同作用下,基于羟基化碳纳米管的纳米流体具有比普通碳纳米管纳米流体更强的导热性能。羟基化碳纳米管构建的Janus颗粒在基液中具备更强的布朗扩散能力,因而可以进一步提高水/碳纳米管纳米流体的热导率。本文揭示了基于羟基化Janus碳纳米管的纳米流体导热机理,为新型传热工质制备提供参考。
    The excellent thermal conductivity of the carbon nanotubes leads to the high thermal conductivity of the nanofluids prepared from carbon nanotubes. The addition of functional groups on the surface of the carbon nanotubes can enhance the stability of the water/CNT nanofluids. The excellent diffusion properties of the Janus particles result in the elevated thermal conductivity of the Janus nanofluids. In the present paper, we construct Hydroxylated single-walled carbon nanotubes(SWCNT-OH) particles as Janus particles and propose a water/SWCNT-OH-Janus nanofluid model by introducing SWCNT-OH particles into a base fluid (water). By using equilibrium molecular dynamics simulations, the thermal conductivity of nanofluids are calculated. The underlying mechanism of the enhanced thermal conductivity is investigated based on the analysis of the solid-like liquid layers formed by liquid molecules around particles, Brownian motion of CNT particles, and CNT/water interfacial thermal resistance. It can be concluded that the thermal conductivity of the nanofluids with SWCNT-OH particles can be enhanced compared with the nanofluids with normal SWCNT particles. The hydrogen bond between hydroxyl group and water molecules results in the adsorption of water molecules to the surface of carbon nanotube. This process increases the density of the liquid adsorption layer on the CNT surface, thereby enhancing the effect of the solid-liquid layer. The hydroxyl groups on the CNT surface degrade the solid-liquid interfacial thermal resistance, which promotes the heat transfer within the nanofluids. Moreover, the hydroxyl groups also enhance the interaction between the CNT particle and the water molecules,leading to stronger particle Brownian motion. The combination of these factors should be responsible for the enhancement thermal conductivity of the water/SWCNT-OH nanofluids. For SWCNT-OH-Janus nanofluids, the thermal conductivity can be further enhanced, owing to the strong Brownian motion of the Janus particles.
  • [1]

    Liu M S, Lin M C, Tsai C Y, Wang C C 2006Int. J. Heat Mass Transf. 49 3028

    [2]

    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A 2001Appl. Phys. Lett. 79 2252

    [3]

    Han X F, Lu L W, Yan S Y, Yang X H, Tian R, Zhao X Y 2021J. Therm. Sci. 30 1581

    [4]

    Ishii K, Ogiyama T, Fumoto K, Nishina Y 2024Appl. Phys. Lett. 125 023104

    [5]

    Wang J, Cui X, Xia G D 2023J. Beijing Univ. Technol. 49 1116(in Chinese) [王军, 崔鑫, 夏国栋2023北京工业大学学报49 1116]

    [6]

    Xuan Y M, Li Q 2000Int. J. Heat Mass Transf. 21 58

    [7]

    Liu B, Liang W H, Luo Z M, Sarvar S, Fereidooni L, Kasaeian A 2024Mol. Liq. 414 126052

    [8]

    Xuan Y M, Duan H L, Li Q 2014RSC Adv. 4 16206

    [9]

    Rapp B, Hussam A 2023J. Appl. Phys. 133 134302

    [10]

    Dai J H, Zhai Y L, Li Z H, Wang H 2024J. Mol. Liq. 400 124518

    [11]

    Liu W W, Wang J, Xia G D, Li Z G 2023Phys. Fluids. 35 083316

    [12]

    Liu W W, Cui J, Wang J, Xia G D, Li Z G 2023Phys. Fluids. 35 032004

    [13]

    Yu W, Choi S U S 2004J. Nanopart. Res. 6 355

    [14]

    Xie H Q, Xi T G, Wang J C 2003Acta Phys. Sin. 52 1444(in Chinese) [谢华清, 奚同庚, 王锦昌2005物理学报52 1444]

    [15]

    Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004Int. J. Heat Mass Transf. 47 4277

    [16]

    Zhang Z Q, Qian S, Wang R J, Zhu Z F 2019Acta Phys. Sin. 68 054401(in Chinese) [张智奇, 钱胜, 王瑞金, 朱泽飞2019物理学报68 054401]

    [17]

    Karthik V, Sahoo S, Pabi S K, Ghosh S 2013Int. J. Therm. Sci. 64 53

    [18]

    Cui W Z, Shen Z J, Yang J G, Wu S H 2015Appl. Therm. Eng. 76 261

    [19]

    Li Y T, Shen L P, Wang H, Wang H B 2013Acta Phys. Sin. 62 124401(in Chinese) [李屹同, 沈谅平, 王浩, 汪汉斌2013物理学报62 124401]

    [20]

    Lenin R, Joy P A, Bera C 2021J. Mol. Liq. 338 116929

    [21]

    Liu W W, Zhang K X, Wang J, Xia G D 2024Acta Phys. Sin. 73 075101(in Chinese) [刘旺旺, 张克学, 王军, 夏国栋2024物理学报73 075101]

    [22]

    Roni M R H, Shahadat M R B, Morshed A M M 2021Micro Nano Lett. 16 221

    [23]

    Jabbari F, Rajabpour A, Saedodin S 2017Chem. Eng. Sci. 174 67

    [24]

    Cui W Z, Shen Z J, Yang J G, Wu S H, Bai M L 2014RSC Adv. 4 55580

    [25]

    Kamalvand M, Karami M 2013Int. J. Therm. Sci. 65 189

    [26]

    Hou Q W, Cao B Y, Guo Z Y 2009Acta Phys. Sin. 58 7809(in Chinese) [侯泉文, 曹炳阳, 过增元2009物理学报58 7809]

    [27]

    Jabbari F, Rajabpour A, Saedodin S 2021Microfluid. Nanofluid. 25 102

    [28]

    Xing M B, Yu J L, Wang R X 2015Appl. Therm. Eng. 87 344

    [29]

    Li X K, Chen W J, Zou C J 2020Powder Technol. 361 957

    [30]

    Chen W Z, Wang S, Zhai Y L, Li Z H 2023Chem. Ind. Eng. Prog. 42 5700(in Chinese) [陈文哲, 王霜, 翟玉玲, 李舟航2023化工进展42 5700]

    [31]

    Pang C W, Jung J, Kang Y T 2014Int. J. Heat Mass Transf. 72 392

    [32]

    Hou J M, Shao C, Huang L Z, Du J Y, Wang R J 2023Powder Technol. 430 119005

    [33]

    Zhou L, Zhu J W, Zhao Y F, Ma H H 2022 Int. J. Heat Mass Transf. 183 122124

    [34]

    Rennhofer H, Zanghellini B 2021Nanomaterials. 11 1469

    [35]

    Premalatha M, Jeevaraj A K S 2017 Part. Sci. Technol. 36 523

    [36]

    Rathinavel S, Priyadharshini K, Panda D 2021Mater. Sci. Eng. B. 268 115095

    [37]

    Zhang X, Zhang Y H, Yan Y R, Chen Z H 2022 Sol. Energy Mater. Sol. Cells. 236 111546

    [38]

    Cui X, Wang J, Xia G D 2022Nanoscale. 14 99

    [39]

    Kobayashi Y, Arai N 2019J. Electrochem. Soc. 166 B3223

    [40]

    Sarkar S, Selvam R P 2007J. Appl. Phys. 102 074302

    [41]

    Tersoff J 1988Phys. Rev. B. 37 6991

    [42]

    Rudyak V Y, Krasnolutskii S L 2017Tech. Phys. 62 1456

    [43]

    Huang J, Sang L X, Yang Q F, Wu Y T 2024Sol. Energy Mater. Sol. Cells. 277 113150

    [44]

    Koo J, Kleinstreuer C 2004J. Nanopart. Res. 6 577

    [45]

    Zhang C Z, Puligheddu M, Zhang L F, Car R, Galli G 2023J. Phys. Chem. B. 127 7011

    [46]

    Wang R J, Qian S, Zhang Z Q 2018Int. J. Heat Mass Transf. 127 1138

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.73.20241332
    [2] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20210969
    [3] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.69.20200308
    [4] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响. 物理学报, doi: 10.7498/aps.68.20181740
    [5] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响. 物理学报, doi: 10.7498/aps.67.20180311
    [6] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.66.046101
    [7] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, doi: 10.7498/aps.64.196601
    [8] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.200508
    [9] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.62.106201
    [10] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.62.186202
    [11] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, doi: 10.7498/aps.62.036101
    [12] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, doi: 10.7498/aps.62.144704
    [13] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究. 物理学报, doi: 10.7498/aps.62.016102
    [14] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.61.146101
    [15] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.066103
    [16] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, doi: 10.7498/aps.57.4347
    [17] 李 俊, 张凯旺, 孟利军, 刘文亮, 钟建新. 碳纳米管表面金纳米颗粒的形成与结构转变. 物理学报, doi: 10.7498/aps.57.382
    [18] 袁剑辉, 袁晓博. 单壁碳纳米管弹性性质的羟基接枝效应. 物理学报, doi: 10.7498/aps.57.3666
    [19] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.1009
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-17

/

返回文章
返回