搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥形Janus颗粒强化纳米流体导热特性的模拟研究

李康睿 王军 夏国栋

引用本文:
Citation:

锥形Janus颗粒强化纳米流体导热特性的模拟研究

李康睿, 王军, 夏国栋

Enhanced thermal conductivity of nanofluids by conical Janus particles

LI Kang-rui, WANG Jun, XIA Guo-dong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,纳米技术的发展使得非球形纳米颗粒的工业化应用成为可能,形貌各向异性的非球形颗粒有利于改善纳米流体的传热性能。有研究表明,将Janus纳米颗粒引入到基液中可进一步增强纳米流体的导热特性。本文设计了一种具备亲水侧面和疏水底面的锥形Janus纳米颗粒,并将其引入到基液中形成锥形Janus纳米流体,采用分子动力学模拟计算了锥形和球形两种Janus纳米流体的热导率,对其导热机理进行了计算分析。结果表明,锥形颗粒表面的类固液体层效应更明显,其在基液中的扩散能力更强,因此锥形纳米流体具备比球形纳米流体更强的导热性能。对于Janus纳米流体,Janus颗粒独特的不对称结构使得其在基液中的布朗运动更为强烈,有效增强了纳米流体内部的传热效率。因此,非球形颗粒与Janus颗粒的结合可进一步提高纳米流体的导热性能,为开发新型传热工质提供了新的思路。
    It has been reported that the thermal conductivity of the nanofluids can be enhanced by adding Janus nanoparticles into the base fluid. Additionally, the non-spherical nanoparticles also affect the thermal characteristics of nanofluids. In this paper, conical nanoparticles are designed as Janus nanoparticles with hydrophilic side and hydrophobic bottom, which are suspended in the base fluid to form cone-shaped Janus nanofluids. By using molecular dynamics (MD) simulations, it is found that the thermal conductivity of conical Janus nanofluids can be enhanced by 43.4% compared to the base fluid, whereas the spherical Janus nanofluids demonstrate an increase of 33.7% under the same volume fraction. According to MD simulation results of the RDF and diffusion coefficients of solid particle and base fluid, the increased thermal conductivity observed in conical nanofluids can be attributed to the higher liquid layer density and the enhanced Brownian motion of the conical particles. For Janus nanofluids, the asymmetrical structure of Janus nanoparticles leads to higher diffusion coefficient compared to normal particles, which enhances the colliding possibility of Janus nanoparticles with surrounding liquid molecules and results in enhanced heat transfer in Janus nanofluids. This paper considered both fixed and unfixed particles to explore the impact of particle diffusion on nanofluids. Under the fixed condition, the Brownian motion of the nanoparticles is artificially excluded, while under the unfixed condition, the particle can diffuse in the base liquid. It is found that for both spherical and conical Janus nanofluids, the thermal conductivity of Janus nanofluids exhabits a gradual increase with rising asymmetry parameter δ under unfixed conditions. However, under fixed conditions, the thermal conductivity of Janus nanofluids is almost independent of the parameter δ. Therefore, the enhanced Brownian motion of the non-spherical particles is likely the cause of the increased thermal conductivity observed in conical Janus nanofluids. The combination of non-spherical particles and Janus particles provides a promising idea for the design of nanofluids with high thermal conductivity.
  • [1]

    Wang X F, Ren X X, Qiu C, Cao Y F, Taleb T, Leung V C M 2021 IEEE Netw. 35 280

    [2]

    Liu M S, Lin M C, Tsai C Y, Wang C C 2006 Int. J. Heat Mass Transf. 49 3028

    [3]

    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A 2001 Appl. Phys. Lett. 79 2252

    [4]

    Han X F, Lu L W, Yan S Y, Yang X H, Tian R, Zhao X Y 2021 J. Therm. Sci. 30 1581

    [5]

    Xuan Y M, Li Q 2000 Int. J. Heat Mass Transf. 21 58

    [6]

    Liu B, Liang W H, Luo Z M, Sarvar S, Fereidooni L, Kasaeian A 2024 Mol. Liq. 414 126052

    [7]

    Xuan Y M, Duan H L, Li Q 2014 RSC Adv. 4 16206

    [8]

    Rapp B, Hussam A 2023 J. Appl. Phys. 133 134302

    [9]

    Dai J H, Zhai Y L, Li Z H, Wang H 2024 J. Mol. Liq. 400 124518

    [10]

    Yu W, Choi S U S 2004 J. Nanopart. Res. 6 355

    [11]

    Qi K, Zhu X G, Wang J, Xia G D 2024 Acta Phys. Sin. 73 156801 (in Chinese) [齐凯, 朱星光, 王军,夏国栋 2024 物理学报 73 156801]

    [12]

    Liu W W, Cui J, Wang J 2023 Phys. Fluids. 35 032004

    [13]

    Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277

    [14]

    Zhang Z Q, Qian S, Wang R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401 (in Chinese) [张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401]

    [15]

    Karthik V, Sahoo S, Pabi S K, Ghosh S 2013 Int. J. Therm. Sci. 64 53

    [16]

    Liu W W, Zhang K X, Wang J, Xia G D 2024 Acta Phys. Sin. 73 075101 (in Chinese) [刘旺旺, 张克学, 王军, 夏国栋 2024 物理学报 73 075101]

    [17]

    Wang R J, Qian S, Zhang Z Q 2018 Int. J. Heat Mass Transf. 127 1138

    [18]

    Dolatabadi N, Rahmani R, Rahnejat H, Garner C P 2019 RSC Adv. 9 2516

    [19]

    Roni M R H, Shahadat M R B, Morshed A M M 2021 Micro Nano Lett. 16 221

    [20]

    Li L, Zhang Y W, Ma H B, Yang M 2010 J. Nanopart. Res. 12 811

    [21]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302

    [22]

    Du J Y, Su Q M, Li L, Wang R J, Zhu Z F 2021 Int. Commun. Heat Mass Transf. 127 105501

    [23]

    Pang C W, Jung J, Kang Y T 2014 Int. J. Heat Mass Transf. 72 392

    [24]

    Zhou L, Zhu J W, Zhao Y F, Ma H H 2022 Int. J. Heat Mass Transf. 183 122124

    [25]

    Wang X W, Xu X F, Choi S U S 1999 J. Thermophys. Heat Transf. 13 474

    [26]

    Cui W Z, Shen Z J, Yang J G, Wu S H, Bai M L 2014 RSC Adv. 4 55580

    [27]

    Zhu D H, Yu W, Zhu G H, Zhang Y C, Xie H Q 2020 Chin. Sci. Bull. 65 222 (in Chinese) [朱大海, 于伟, 朱桂华, 张迎春, 谢华清 2020 科学通报 65 222]

    [28]

    Wang J, Cui X, Xia G D 2023 J. Beijing Univ. Technol. 49 1116 (in Chinese) [王军, 崔鑫, 夏国栋 2023 北京工业大学学报 49 1116]

    [29]

    Li D, Hong B Y, Fang W J, Guo Y S, Lin R S 2010 Ind. Eng. Chem. Res. 49 1697

    [30]

    Murshed S M S, Leong K C, Yang C 2005 Int. J. Therm. Sci. 44 367

    [31]

    Li K R, Wang J, Xia G D 2025 Acta Phys. Sin. 74 064701 (in Chinese) [李康睿, 王军, 夏国栋 2025 物理学报 74 064701]

    [32]

    Yu L Y, Liu D, Botz F 2012 Exp. Therm. Fluid Sci. 37 72

    [33]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [34]

    Jabbari F, Rajabpour A, Saedodin S 2021 Microfluid. Nanofluid. 25 102

    [35]

    Zhang L Y, Yu Wei, Zhu D H, Xie H Q, Huang G W 2017 J. Nanomater. 2017 5802016

    [36]

    Cui X, Wang J, Xia G D 2022 Nanoscale. 14 99

    [37]

    Kobayashi Y, Arai N 2019 J. Electrochem. Soc. 166 B3223

    [38]

    Hong L, Jiang S, Granick S 2006 Langmuir. 22 9495

    [39]

    Zhao H, Liang F X, Qu X Z, Wang Q, Yang Z Z 2015 Macromolecules. 48 700

    [40]

    Rudyak V Y, Krasnolutskii S L 2017 Tech. Phys. 62 1456

    [41]

    Huang J, Sang L X, Yang Q F, Wu Y T 2024 Sol. Energy Mater. Sol. Cells. 277 113150

    [42]

    Koo J, Kleinstreuer C 2004 J. Nanopart. Res. 6 577

    [43]

    Naghizadeh J, Rice S A 1962 J. Chem. Phys. 36 2710

  • [1] 李康睿, 王军, 夏国栋. 基于羟基化Janus碳纳米管的纳米流体导热特性. 物理学报, doi: 10.7498/aps.74.20241657
    [2] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.73.20241332
    [3] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟. 物理学报, doi: 10.7498/aps.72.20222270
    [4] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, doi: 10.7498/aps.71.20220632
    [5] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, doi: 10.7498/aps.70.20201358
    [6] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响. 物理学报, doi: 10.7498/aps.68.20181740
    [7] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, doi: 10.7498/aps.66.084703
    [8] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, doi: 10.7498/aps.64.126202
    [9] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, doi: 10.7498/aps.64.196601
    [10] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.236601
    [11] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究. 物理学报, doi: 10.7498/aps.63.034501
    [12] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, doi: 10.7498/aps.63.076501
    [13] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.62.106201
    [14] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.62.186202
    [15] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, doi: 10.7498/aps.62.036101
    [16] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, doi: 10.7498/aps.62.026501
    [17] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.61.076501
    [18] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.61.146101
    [19] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.066601
    [20] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.1009
计量
  • 文章访问数:  36
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-16

/

返回文章
返回