搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥形Janus颗粒强化纳米流体导热特性的模拟

李康睿 王军 夏国栋

引用本文:
Citation:

锥形Janus颗粒强化纳米流体导热特性的模拟

李康睿, 王军, 夏国栋
cstr: 32037.14.aps.74.20250759

Simulation study on thermal conductivity of conical Janus particles reinforced nanofluids

LI Kangrui, WANG Jun, XIA Guodong
cstr: 32037.14.aps.74.20250759
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 近年来, 纳米技术的发展使得非球形纳米颗粒的工业化应用成为可能, 形貌各向异性的非球形颗粒有利于改善纳米流体的传热性能. 有研究表明, 将Janus 纳米颗粒引入到基液中可进一步增强纳米流体的导热特性. 本文设计了一种具备亲水侧面和疏水底面的锥形Janus纳米颗粒, 并将其引入到基液中形成锥形Janus纳米流体, 采用分子动力学模拟计算了锥形和球形两种Janus纳米流体的热导率, 对其导热机理进行计算分析. 结果表明, 锥形颗粒表面的类固液体层效应更明显, 其在基液中的扩散能力更强, 因此锥形纳米流体具备比球形纳米流体更强的导热性能. 对于Janus纳米流体, Janus颗粒独特的不对称结构使得其在基液中的布朗运动更为强烈, 有效增强了纳米流体内部的传热效率. 因此, 非球形颗粒与Janus颗粒的结合可进一步提高纳米流体的导热性能, 为开发新型传热工质提供了新的思路.
    It has been reported that the thermal conductivity of the nanofluids can be enhanced by adding Janus nanoparticles into the base fluid. Additionally, the non-spherical nanoparticles also affect the thermal characteristics of nanofluids. In this work, conical nanoparticles are designed as Janus nanoparticles with hydrophilic side and hydrophobic bottom, which are suspended in the base fluid to form cone-shaped Janus nanofluids. By using molecular dynamics (MD) simulations, it is found that the thermal conductivity of conical Janus nanofluids can be enhanced by 43.4% compared with that of the base fluid, whereas the spherical Janus nanofluids indicate an increase of 33.7% under the same volume fraction. According to MD simulation results of the RDF and diffusion coefficients of solid particle and base fluid, the increased thermal conductivity observed in conical nanofluids can be attributed to the higher liquid layer density and the enhanced Brownian motion of the conical particles. For Janus nanofluids, the asymmetrical structure of Janus nanoparticles leads to higher diffusion coefficient than that of normal particles, which enhances the colliding possibility of Janus nanoparticles with surrounding liquid molecules, thus resulting in enhanced heat transfer in Janus nanofluids. In this paper, both fixed and unfixed particles are considered to explore the influence of particle diffusion on nanofluids. Under the fixed condition, the Brownian motion of the nanoparticles is artificially excluded, while under the unfixed condition, the particle can diffuse in the base liquid. It is found that for both spherical and conical Janus nanofluids, the thermal conductivity of Janus nanofluids gradually increases with the augment of asymmetry parameter δ under unfixed conditions. However, under fixed conditions, the thermal conductivity of Janus nanofluids is almost independent of the parameter δ. Therefore, the enhanced Brownian motion of the non-spherical particles is a likely reason of the increased thermal conductivity observed in conical Janus nanofluids. The combination of non-spherical particles and Janus particles provides a promising idea for designing nanofluids with high thermal conductivity.
      通信作者: 王军, jwang@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12472268)资助的课题.
      Corresponding author: WANG Jun, jwang@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12472268).
    [1]

    Wang X F, Ren X X, Qiu C, Cao Y F, Taleb T, Leung V C M 2021 IEEE Netw. 35 280Google Scholar

    [2]

    Liu M S, Lin M C, Tsai C Y, Wang C C 2006 Int. J. Heat Mass Transf. 49 3028Google Scholar

    [3]

    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A 2001 Appl. Phys. Lett. 79 2252Google Scholar

    [4]

    Han X F, Lu L W, Yan S Y, Yang X H, Tian R, Zhao X Y 2021 J. Therm. Sci. 30 1581Google Scholar

    [5]

    Xuan Y M, Li Q 2000 Int. J. Heat Mass Transf. 21 58Google Scholar

    [6]

    Liu B, Liang W H, Luo Z M, Sarvar S, Fereidooni L, Kasaeian A 2024 Mol. Liq. 414 126052Google Scholar

    [7]

    Xuan Y M, Duan H L, Li Q 2014 RSC Adv. 4 16206Google Scholar

    [8]

    Rapp B, Hussam A 2023 J. Appl. Phys. 133 134302Google Scholar

    [9]

    Dai J H, Zhai Y L, Li Z H, Wang H 2024 J. Mol. Liq. 400 124518Google Scholar

    [10]

    Yu W, Choi S U S 2004 J. Nanopart. Res. 6 355Google Scholar

    [11]

    齐凯, 朱星光, 王军, 夏国栋 2024 物理学报 73 156801Google Scholar

    Qi K, Zhu X G, Wang J, Xia G D 2024 Acta Phys. Sin. 73 156801Google Scholar

    [12]

    Liu W W, Cui J, Wang J 2023 Phys. Fluids. 35 032004Google Scholar

    [13]

    Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277Google Scholar

    [14]

    张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401Google Scholar

    Zhang Z Q, Qian S, Wang R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401Google Scholar

    [15]

    Karthik V, Sahoo S, Pabi S K, Ghosh S 2013 Int. J. Therm. Sci. 64 53Google Scholar

    [16]

    刘旺旺, 张克学, 王军, 夏国栋 2024 物理学报 73 075101Google Scholar

    Liu W W, Zhang K X, Wang J, Xia G D 2024 Acta Phys. Sin. 73 075101Google Scholar

    [17]

    Wang R J, Qian S, Zhang Z Q 2018 Int. J. Heat Mass Transf. 127 1138Google Scholar

    [18]

    Dolatabadi N, Rahmani R, Rahnejat H, Garner C P 2019 RSC Adv. 9 2516Google Scholar

    [19]

    Roni M R H, Shahadat M R B, Morshed A M M 2021 Micro Nano Lett. 16 221Google Scholar

    [20]

    Li L, Zhang Y W, Ma H B, Yang M 2010 J. Nanopart. Res. 12 811Google Scholar

    [21]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302Google Scholar

    [22]

    Du J Y, Su Q M, Li L, Wang R J, Zhu Z F 2021 Int. Commun. Heat Mass Transf. 127 105501Google Scholar

    [23]

    Pang C W, Jung J, Kang Y T 2014 Int. J. Heat Mass Transf. 72 392Google Scholar

    [24]

    Zhou L, Zhu J W, Zhao Y F, Ma H H 2022 Int. J. Heat Mass Transf. 183 122124Google Scholar

    [25]

    Wang X W, Xu X F, Choi S U S 1999 J. Thermophys. Heat Transf. 13 474Google Scholar

    [26]

    Cui W Z, Shen Z J, Yang J G, Wu S H, Bai M L 2014 RSC Adv. 4 55580Google Scholar

    [27]

    朱大海, 于伟, 朱桂华, 张迎春, 谢华清 2020 科学通报 65 222Google Scholar

    Zhu D H, Yu W, Zhu G H, Zhang Y C, Xie H Q 2020 Chin. Sci. Bull. 65 222Google Scholar

    [28]

    王军, 崔鑫, 夏国栋 2023 北京工业大学学报 49 1116Google Scholar

    Wang J, Cui X, Xia G D 2023 J. Beijing Univ. Technol. 49 1116Google Scholar

    [29]

    Li D, Hong B Y, Fang W J, Guo Y S, Lin R S 2010 Ind. Eng. Chem. Res. 49 1697Google Scholar

    [30]

    Murshed S M S, Leong K C, Yang C 2005 Int. J. Therm. Sci. 44 367Google Scholar

    [31]

    李康睿, 王军, 夏国栋 2025 物理学报 74 064701Google Scholar

    Li K R, Wang J, Xia G D 2025 Acta Phys. Sin. 74 064701Google Scholar

    [32]

    Yu L Y, Liu D, Botz F 2012 Exp. Therm. Fluid Sci. 37 72Google Scholar

    [33]

    侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809Google Scholar

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809Google Scholar

    [34]

    Jabbari F, Rajabpour A, Saedodin S 2021 Microfluid. Nanofluid. 25 102Google Scholar

    [35]

    Zhang L Y, Yu Wei, Zhu D H, Xie H Q, Huang G W 2017 J. Nanomater. 2017 5802016Google Scholar

    [36]

    Cui X, Wang J, Xia G D 2022 Nanoscale 14 99Google Scholar

    [37]

    Kobayashi Y, Arai N 2019 J. Electrochem. Soc. 166 B3223Google Scholar

    [38]

    Hong L, Jiang S, Granick S 2006 Langmuir. 22 9495Google Scholar

    [39]

    Zhao H, Liang F X, Qu X Z, Wang Q, Yang Z Z 2015 Macromolecules. 48 700Google Scholar

    [40]

    Rudyak V Y, Krasnolutskii S L 2017 Tech. Phys. 62 1456Google Scholar

    [41]

    Huang J, Sang L X, Yang Q F, Wu Y T 2024 Sol. Energy Mater. Sol. Cells. 277 113150Google Scholar

    [42]

    Koo J, Kleinstreuer C 2004 J. Nanopart. Res. 6 577Google Scholar

    [43]

    Naghizadeh J, Rice S A 1962 J. Chem. Phys. 36 2710Google Scholar

  • 图 1  纳米流体模拟系统图

    Fig. 1.  Simulation system of nanofluids.

    图 2  球形Janus纳米流体和锥形Janus纳米流体模型的初始结构

    Fig. 2.  Initial structure model of spherical Janus nanofluids and conical Janus nanofluids.

    图 3  锥形Janus纳米流体和球形Janus纳米流体在体积分数为1%和2%下的热导率

    Fig. 3.  Thermal conductivity of base liquid, conical and spherical Janus nanofluids at 1% and 2% volume fractions.

    图 4  Janus纳米流体中氩-氩原子的径向分布函数 (a) 二维平面图; (b) 三维立体图

    Fig. 4.  RDF of argon-argon atoms for different types of Janus nanofluids: (a) Planar graph; (b) three-dimensional graph.

    图 5  Janus纳米流体中铜-氩原子的径向分布函数

    Fig. 5.  Radial distribution function of copper-argon atoms for different types of Janus nanofluids.

    图 6  球形纳米流体中氩原子数密度随距离变化图

    Fig. 6.  Distribution of the number density of argon atoms with distance in spherical nanofluids.

    图 7  Janus纳米流体中基液原子的均方位移

    Fig. 7.  MSD of the base fluid for different types of Janus nanofluids.

    图 8  纯氩和不同类型Janus纳米流体中基液的扩散系数

    Fig. 8.  Diffusion coefficient of base liquid under different conditions of Janus nanofluids and pure argon.

    图 9  颗粒不固定和固定情况下(a)球形Janus纳米流体和(b)锥形Janus纳米流体的热导率

    Fig. 9.  Thermal conductivity of Janus nanofluids under unfixed and fixed conditions for (a) spherical Janus nanofluids and (b) conical Janus nanofluids.

    图 10  球形和锥形Janus纳米颗粒MSD随模拟时间的变化图

    Fig. 10.  Mean square displacement (MSD) of spherical and conical Janus nanoparticles with simulation time.

    图 11  球形和锥形Janus纳米颗粒的扩散系数

    Fig. 11.  Diffusion coefficient of spherical and conical Janus nanoparticles.

    表 1  Janus纳米流体参数[36]

    Table 1.  Parameters for Janus nanofluids[36].

    类型
    c1 1 0.8 0.6 0.4 0.2
    c2 1 1.2 1.4 1.6 1.8
    δ 0 0.2 0.4 0.6 0.8
    下载: 导出CSV
  • [1]

    Wang X F, Ren X X, Qiu C, Cao Y F, Taleb T, Leung V C M 2021 IEEE Netw. 35 280Google Scholar

    [2]

    Liu M S, Lin M C, Tsai C Y, Wang C C 2006 Int. J. Heat Mass Transf. 49 3028Google Scholar

    [3]

    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A 2001 Appl. Phys. Lett. 79 2252Google Scholar

    [4]

    Han X F, Lu L W, Yan S Y, Yang X H, Tian R, Zhao X Y 2021 J. Therm. Sci. 30 1581Google Scholar

    [5]

    Xuan Y M, Li Q 2000 Int. J. Heat Mass Transf. 21 58Google Scholar

    [6]

    Liu B, Liang W H, Luo Z M, Sarvar S, Fereidooni L, Kasaeian A 2024 Mol. Liq. 414 126052Google Scholar

    [7]

    Xuan Y M, Duan H L, Li Q 2014 RSC Adv. 4 16206Google Scholar

    [8]

    Rapp B, Hussam A 2023 J. Appl. Phys. 133 134302Google Scholar

    [9]

    Dai J H, Zhai Y L, Li Z H, Wang H 2024 J. Mol. Liq. 400 124518Google Scholar

    [10]

    Yu W, Choi S U S 2004 J. Nanopart. Res. 6 355Google Scholar

    [11]

    齐凯, 朱星光, 王军, 夏国栋 2024 物理学报 73 156801Google Scholar

    Qi K, Zhu X G, Wang J, Xia G D 2024 Acta Phys. Sin. 73 156801Google Scholar

    [12]

    Liu W W, Cui J, Wang J 2023 Phys. Fluids. 35 032004Google Scholar

    [13]

    Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277Google Scholar

    [14]

    张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401Google Scholar

    Zhang Z Q, Qian S, Wang R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401Google Scholar

    [15]

    Karthik V, Sahoo S, Pabi S K, Ghosh S 2013 Int. J. Therm. Sci. 64 53Google Scholar

    [16]

    刘旺旺, 张克学, 王军, 夏国栋 2024 物理学报 73 075101Google Scholar

    Liu W W, Zhang K X, Wang J, Xia G D 2024 Acta Phys. Sin. 73 075101Google Scholar

    [17]

    Wang R J, Qian S, Zhang Z Q 2018 Int. J. Heat Mass Transf. 127 1138Google Scholar

    [18]

    Dolatabadi N, Rahmani R, Rahnejat H, Garner C P 2019 RSC Adv. 9 2516Google Scholar

    [19]

    Roni M R H, Shahadat M R B, Morshed A M M 2021 Micro Nano Lett. 16 221Google Scholar

    [20]

    Li L, Zhang Y W, Ma H B, Yang M 2010 J. Nanopart. Res. 12 811Google Scholar

    [21]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302Google Scholar

    [22]

    Du J Y, Su Q M, Li L, Wang R J, Zhu Z F 2021 Int. Commun. Heat Mass Transf. 127 105501Google Scholar

    [23]

    Pang C W, Jung J, Kang Y T 2014 Int. J. Heat Mass Transf. 72 392Google Scholar

    [24]

    Zhou L, Zhu J W, Zhao Y F, Ma H H 2022 Int. J. Heat Mass Transf. 183 122124Google Scholar

    [25]

    Wang X W, Xu X F, Choi S U S 1999 J. Thermophys. Heat Transf. 13 474Google Scholar

    [26]

    Cui W Z, Shen Z J, Yang J G, Wu S H, Bai M L 2014 RSC Adv. 4 55580Google Scholar

    [27]

    朱大海, 于伟, 朱桂华, 张迎春, 谢华清 2020 科学通报 65 222Google Scholar

    Zhu D H, Yu W, Zhu G H, Zhang Y C, Xie H Q 2020 Chin. Sci. Bull. 65 222Google Scholar

    [28]

    王军, 崔鑫, 夏国栋 2023 北京工业大学学报 49 1116Google Scholar

    Wang J, Cui X, Xia G D 2023 J. Beijing Univ. Technol. 49 1116Google Scholar

    [29]

    Li D, Hong B Y, Fang W J, Guo Y S, Lin R S 2010 Ind. Eng. Chem. Res. 49 1697Google Scholar

    [30]

    Murshed S M S, Leong K C, Yang C 2005 Int. J. Therm. Sci. 44 367Google Scholar

    [31]

    李康睿, 王军, 夏国栋 2025 物理学报 74 064701Google Scholar

    Li K R, Wang J, Xia G D 2025 Acta Phys. Sin. 74 064701Google Scholar

    [32]

    Yu L Y, Liu D, Botz F 2012 Exp. Therm. Fluid Sci. 37 72Google Scholar

    [33]

    侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809Google Scholar

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809Google Scholar

    [34]

    Jabbari F, Rajabpour A, Saedodin S 2021 Microfluid. Nanofluid. 25 102Google Scholar

    [35]

    Zhang L Y, Yu Wei, Zhu D H, Xie H Q, Huang G W 2017 J. Nanomater. 2017 5802016Google Scholar

    [36]

    Cui X, Wang J, Xia G D 2022 Nanoscale 14 99Google Scholar

    [37]

    Kobayashi Y, Arai N 2019 J. Electrochem. Soc. 166 B3223Google Scholar

    [38]

    Hong L, Jiang S, Granick S 2006 Langmuir. 22 9495Google Scholar

    [39]

    Zhao H, Liang F X, Qu X Z, Wang Q, Yang Z Z 2015 Macromolecules. 48 700Google Scholar

    [40]

    Rudyak V Y, Krasnolutskii S L 2017 Tech. Phys. 62 1456Google Scholar

    [41]

    Huang J, Sang L X, Yang Q F, Wu Y T 2024 Sol. Energy Mater. Sol. Cells. 277 113150Google Scholar

    [42]

    Koo J, Kleinstreuer C 2004 J. Nanopart. Res. 6 577Google Scholar

    [43]

    Naghizadeh J, Rice S A 1962 J. Chem. Phys. 36 2710Google Scholar

计量
  • 文章访问数:  1534
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-13
  • 修回日期:  2025-07-11
  • 上网日期:  2025-08-16
  • 刊出日期:  2025-10-05

/

返回文章
返回