搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯/银纳米颗粒复合物的分子动力学模拟研究

李琳 王暄 孙伟峰 雷清泉

引用本文:
Citation:

聚乙烯/银纳米颗粒复合物的分子动力学模拟研究

李琳, 王暄, 孙伟峰, 雷清泉

Molecular dynamics simulation of polyethylene/silver-nanoparticle composites

Li Lin, Wang Xuan, Sun Wei-Feng, Lei Qing-Quan
PDF
导出引用
  • 通过分子动力学模拟对聚乙烯/银纳米颗粒复合物的结构、极化率和红外光谱、热力学性质、力学特性进行计算, 分析其随模拟温度和银颗粒尺寸的变化规律. 模拟结果表明: 聚乙烯/银纳米颗粒复合物为各向同性的无定形结构, 温度升高可提高银纳米颗粒的分散均匀性; 银纳米颗粒表面多个原子层呈现无定形状态, 并在银颗粒和聚乙烯基体的界面形成电极化层, 界面区域随颗粒尺寸和温度的增加分别减小和增加; 与聚乙烯体系相比, 聚乙烯/银纳米颗粒复合物的极化率高很多, 且随温度的升高和银颗粒尺寸的减小而增大; 银颗粒尺寸直接影响界面电偶极矩的强度和振动频率, 红外光谱峰强度和峰位随颗粒尺寸发生变化; 聚乙烯/银纳米颗粒复合物具有比聚乙烯体系更高的等容热容和与聚乙烯体系相反的负值热压力系数, 热容随颗粒尺寸的变化较小, 但随温度的升高而明显减小, 具有显著的温度效应; 热压力系数随温度的变化较小, 但随颗粒尺寸的增加而减小, 具有明显的尺度效应, 温度稳定性更好; 聚乙烯/银纳米颗粒复合物的力学特性表现出各向同性材料的弹性常数张量, 具有比聚乙烯体系更高的杨氏模量和泊松比, 并且都随温度的升高和银颗粒尺寸的增大而减小, 加入银纳米颗粒可有效改善聚乙烯的力学性质.
    Molecular dynamics simulations of polyethylene/silver-nanoparticle composites are implemented to calculate the structures, electrical, thermal and mechanical properties, thereby investigating their relationships with the nanoparticle dimension and simulation temperature. The results show that polyethylene/silver-nanoparticle composites are of isotropic amorphous structure, and the dispersion of nanoparticles in composite can be enhanced at a relatively higher temperature. Multi-layers of atoms on nanoparticle surface change into amorphous configurations, and electrical polarization interface layers are formed between silver nanoparticles and polyethylene matrix. The interface region shrinks and expends respectively with nanoparticle dimension and temperature increasing. Compared with polyethylene system, the polyethylene/silver-nanoparticle composite presents explicitly high polarizability which increases with temperature and nanoparticle size rising simultaneously. The silver nanopaticle dimension directly influences the intensity and frequency of interfacial dipole moment, resulting in corresponding variations of peak position and intensity in infrared spectrum. The polyethylene/silver-nanoparticle composite also shows higher isometric heat capacity and negative thermal pressure coefficient with better temperature stability, which decreases explicitly with temperature and nanoparticle size increasing respectively, than polyethylene system. The mechanical property of polyethylene/silver-nanoparticle composite shows isotropic elastic constant tensor with considerably higher Young modulus and Poisson ratio than the polyethylene system, both of which decrease with temperature and nanoparticle dimension increasing, which indicates the improvement on mechanical property with Ag nanoparticle filler.
    • 基金项目: 国家重点基础研究发展计划(批准号:2009CB724505)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB724505).
    [1]

    Dissado L A, Fothergill J C 2004 Trans. IEEE DEI 11 737

    [2]

    Tanaka T, Montannari G C, Mlhaupt R 2004 Trans. IEEE DEI 11 763

    [3]

    Stevens G C 2005 J. Phys. D 38 174

    [4]

    Tanaka T 2006 IEEJ Trans. Fundam. Mater. 126 1019

    [5]

    Tanaka M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K 2008 Trans. IEEE DEI 15 1224

    [6]

    Ueki M M, Zanin M 1999 Trans. IEEE DEI 6 876

    [7]

    Fukushima K, Takahashi H, Takezawa Y, Kawahira T, Itoh M, Kanai J 2006 IEEJ Trans. Fundam. Mater. 126 1167

    [8]

    Tanka T, Ohki Y, Ochi M, Harada M, Imai T 2008 Trans. IEEE DEI 15 81

    [9]

    Mcmanus A, Siegel R, Doremus R, Bizios R 2000 Annals Biomed. Eng. 28 S15

    [10]

    Vaia R, Giannelis E 2001 MRS Bull. 26 394

    [11]

    Nelson J K, Hu Y 2006 Proc. Int. Conf. on Prop. & Appl. of Dielectr. Mater. Bali, Indonesia, 2006 p150

    [12]

    Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 1

    [13]

    Nelson J K, Hu Y 2005 J. Phys. D 38 213

    [14]

    Raetzke S, Kindersberger J 2006 IEEJ Trans. Fundam. Mater. 126 1044

    [15]

    Smith R C, Liang C, Landry M, Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 187

    [16]

    Lewis T J 2004 IEEE Int. Conf. Solid Dielectr. 2 792

    [17]

    Starr F, Schroder T, Glotzer S 2001 Phys. Rev. E 64 021802

    [18]

    Smith G, Bedrov D, Li L, Byutner O 2002 J. Chem. Phys. 117 9478

    [19]

    Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348

    [20]

    Zeng Q H, Yu A B, Lu G Q 2008 Prog. Polym. Sci. 33 191

    [21]

    Rigby D, Roe R J 1987 J. Chem. Phys. 87 7285

    [22]

    Rigby D, Roe R J 1988 J. Chem. Phys. 89 5280

    [23]

    Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1

  • [1]

    Dissado L A, Fothergill J C 2004 Trans. IEEE DEI 11 737

    [2]

    Tanaka T, Montannari G C, Mlhaupt R 2004 Trans. IEEE DEI 11 763

    [3]

    Stevens G C 2005 J. Phys. D 38 174

    [4]

    Tanaka T 2006 IEEJ Trans. Fundam. Mater. 126 1019

    [5]

    Tanaka M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K 2008 Trans. IEEE DEI 15 1224

    [6]

    Ueki M M, Zanin M 1999 Trans. IEEE DEI 6 876

    [7]

    Fukushima K, Takahashi H, Takezawa Y, Kawahira T, Itoh M, Kanai J 2006 IEEJ Trans. Fundam. Mater. 126 1167

    [8]

    Tanka T, Ohki Y, Ochi M, Harada M, Imai T 2008 Trans. IEEE DEI 15 81

    [9]

    Mcmanus A, Siegel R, Doremus R, Bizios R 2000 Annals Biomed. Eng. 28 S15

    [10]

    Vaia R, Giannelis E 2001 MRS Bull. 26 394

    [11]

    Nelson J K, Hu Y 2006 Proc. Int. Conf. on Prop. & Appl. of Dielectr. Mater. Bali, Indonesia, 2006 p150

    [12]

    Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 1

    [13]

    Nelson J K, Hu Y 2005 J. Phys. D 38 213

    [14]

    Raetzke S, Kindersberger J 2006 IEEJ Trans. Fundam. Mater. 126 1044

    [15]

    Smith R C, Liang C, Landry M, Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 187

    [16]

    Lewis T J 2004 IEEE Int. Conf. Solid Dielectr. 2 792

    [17]

    Starr F, Schroder T, Glotzer S 2001 Phys. Rev. E 64 021802

    [18]

    Smith G, Bedrov D, Li L, Byutner O 2002 J. Chem. Phys. 117 9478

    [19]

    Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348

    [20]

    Zeng Q H, Yu A B, Lu G Q 2008 Prog. Polym. Sci. 33 191

    [21]

    Rigby D, Roe R J 1987 J. Chem. Phys. 87 7285

    [22]

    Rigby D, Roe R J 1988 J. Chem. Phys. 89 5280

    [23]

    Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1

  • [1] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟. 物理学报, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [2] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [3] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟. 物理学报, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [4] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [5] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [7] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究. 物理学报, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [8] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [9] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [10] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究. 物理学报, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [11] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [12] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [13] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [14] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [15] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟. 物理学报, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [16] 李瑞, 胡元中, 王慧. Si表面间水平碳纳米管束的分子动力学模拟研究. 物理学报, 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [17] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [18] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [19] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  4113
  • PDF下载量:  1432
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-10
  • 修回日期:  2013-01-14
  • 刊出日期:  2013-05-05

聚乙烯/银纳米颗粒复合物的分子动力学模拟研究

  • 1. 哈尔滨理工大学电气与电子工程学院, 工程电介质及其应用教育部重点实验室, 黑龙江省电介质工程重点实验室, 哈尔滨 150080
    基金项目: 国家重点基础研究发展计划(批准号:2009CB724505)资助的课题.

摘要: 通过分子动力学模拟对聚乙烯/银纳米颗粒复合物的结构、极化率和红外光谱、热力学性质、力学特性进行计算, 分析其随模拟温度和银颗粒尺寸的变化规律. 模拟结果表明: 聚乙烯/银纳米颗粒复合物为各向同性的无定形结构, 温度升高可提高银纳米颗粒的分散均匀性; 银纳米颗粒表面多个原子层呈现无定形状态, 并在银颗粒和聚乙烯基体的界面形成电极化层, 界面区域随颗粒尺寸和温度的增加分别减小和增加; 与聚乙烯体系相比, 聚乙烯/银纳米颗粒复合物的极化率高很多, 且随温度的升高和银颗粒尺寸的减小而增大; 银颗粒尺寸直接影响界面电偶极矩的强度和振动频率, 红外光谱峰强度和峰位随颗粒尺寸发生变化; 聚乙烯/银纳米颗粒复合物具有比聚乙烯体系更高的等容热容和与聚乙烯体系相反的负值热压力系数, 热容随颗粒尺寸的变化较小, 但随温度的升高而明显减小, 具有显著的温度效应; 热压力系数随温度的变化较小, 但随颗粒尺寸的增加而减小, 具有明显的尺度效应, 温度稳定性更好; 聚乙烯/银纳米颗粒复合物的力学特性表现出各向同性材料的弹性常数张量, 具有比聚乙烯体系更高的杨氏模量和泊松比, 并且都随温度的升高和银颗粒尺寸的增大而减小, 加入银纳米颗粒可有效改善聚乙烯的力学性质.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回