搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米颗粒布朗扩散边界条件的分子动力学模拟

马奥杰 陈颂佳 李玉秀 陈颖

引用本文:
Citation:

纳米颗粒布朗扩散边界条件的分子动力学模拟

马奥杰, 陈颂佳, 李玉秀, 陈颖

Molecular dynamics simulation of Brownian diffusion boundary condition for nanoparticles

Ma Ao-Jie, Chen Song-Jia, Li Yu-Xiu, Chen Ying
PDF
HTML
导出引用
  • 介观尺度下颗粒布朗运动的摩擦系数符合黏性流体力学边界条件, 当颗粒尺度减小至纳米级别时, 边界条件向滑移过渡; 另一方面, 随着颗粒尺度的减小, 颗粒表面溶剂分子的吸附效应对颗粒水动力学半径的影响不可忽略. 分子动力学模拟可以捕获纳米流体中颗粒与溶剂分子相互作用的微观细节且计算精度高. 以刚性TIP4P/2005水分子模型为溶剂, 建立不同大小的Cu纳米颗粒在水中扩散的全原子模型. 采用单颗粒追踪方法对颗粒的平动和转动扩散系数进行拟合, 将摩擦因子与黏性边界条件和滑移边界条件下的结果进行比较, 并研究了溶剂在颗粒表面的吸附特性. 研究发现纳米颗粒的平转动摩擦因子均在两种边界条件所预测的理论值之间, 颗粒尺寸越小, 溶剂分子的吸附越明显, 颗粒表面的水分子层会增大颗粒的水动力学半径使得摩擦因子的计算结果偏向黏性边界, 纳米颗粒尺寸约小于5倍溶剂分子尺寸时, 需要考虑颗粒表面的溶剂层对颗粒水动力半径的影响.
    Brownian motion refers to the endless random motion of nanometer-to-micron particles suspended in a fluid. It widely exists in nature, and is applied to energy, biology, chemical industry, environment and other industries. As the Brownian motion of the object decreases from the micron level to the nanometer level, the boundary conditions of the particle motion no longer strictly follow the stick hydrodynamic boundary conditions, but are closer to the slip boundary theory, meanwhile, the interaction between particles and solvents has increasingly important influence on particle dynamics. Molecular dynamics simulation is an important means to study nanofluids, which can not only capture the microscopic details of the interactions between particles and solvent molecules in nanofluids, but also have high potential function accuracy. In this paper, an all-atom model of the diffusion of Cu nanoparticles of different sizes in water is established by using the rigid TIP4P/2005 water molecule model as solvent, the dynamic viscosity from the TIP4P/2005 model is in good agreement with the experimental result, which is verified by the Green-Kubo formula. The FCC lattice structure is used to construct Cu particles of 0.5 nm, 1.0 nm, 1.5 nm, 2.0 nm in size, and the interaction between atoms in the particle is described by the EAM potential. The translational diffusion coefficient of particles is fitted by the single particle tracking algorithm and the least square method, the rotational diffusion coefficient of particles is obtained by quaternion transformation. The diffusion coefficient and friction factor of the particles are calculated, and the friction factor is compared with the result under the stick hydrodynamics boundary conditions and the result under the slip boundary conditions. It is found that the frictional factors of translation and rotation of nano-particles lie between the theoretical values predicted by the two boundary conditions. The radial distribution functions of water molecules around nanoparticles of different sizes are calculated, we find that the smaller the particle size, the more obvious the adsorption of solvent molecules will be, and the water molecular layer on the particle surface will increase the effective volume of particles and make the calculation result of friction factor larger. The effect of solvent adsorption on the effective hydrodynamic radius of particles cannot be ignored when calculating the friction coefficient of Brownian motion of nano-particles, especially when the particle radius is close to the solvent radius. In Brownian dynamics, viscous resistance and stochastic force are constrained by fluctuation dissipation theorem, and a reasonable selection of particle friction factor can provide theoretical basis for the improvement of Brownian dynamics.
      通信作者: 李玉秀, yuxiu.li@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 51776043)资助的课题
      Corresponding author: Li Yu-Xiu, yuxiu.li@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51776043)
    [1]

    Brown R 1828 Philos. Mag. 4 161Google Scholar

    [2]

    Einstein A 1905 Ann. Phys. 17 549

    [3]

    Bian X, Kim C, Karniadakis G E 2016 Soft Matter 12 01Google Scholar

    [4]

    Tao Q, Luigi G R 2016 Mathematical Analysis Probability and Applications-Plenary Lectures (New York: Springer International Publishing) p2

    [5]

    王亮, 卢宇源, 安立佳 2017 应用化学 34 1250Google Scholar

    Wang L, Lu Y Y, An L J 2017 Chin. J. Appl. Chem. 34 1250Google Scholar

    [6]

    Hu C M, Zwanzig R 1974 J. Chem. Phys. 60 4354Google Scholar

    [7]

    Edward J T 1970 J. Chem. Educ. 47 261Google Scholar

    [8]

    Richardson S 2006 J. Fluid Mech. 59 707

    [9]

    Ollila S T T, Smith C J, Ala-Nissila T, Denniston C 2013 Multiscale Model. Simul. 11 213Google Scholar

    [10]

    Vargas-Lara F, Starr F W, Douglas J F 2016 AIP Publishing LLC 1736 020080Google Scholar

    [11]

    Nisha M R, Philip J 2013 Phys. Scr. 88 15602Google Scholar

    [12]

    Velasco-Velez J J, Wu C H, Pascal T A, Wan L F, Guo J, Prendergast D, Salmeron M 2014 Science 346 831Google Scholar

    [13]

    Vasanthi R, Ravichandran S, Bagchi B 2001 J. Chem. Phys. 114 7989Google Scholar

    [14]

    Vasanthi R, Bhattacharyya S, Bagchi B 2002 J. Chem. Phys. 116 1092Google Scholar

    [15]

    何昱辰, 刘向军 2014 力学学报 46 871Google Scholar

    He Y C, Liu X J 2014 Acta Mech. Sin. 46 871Google Scholar

    [16]

    Markutsya S, Subramaniam S, Vigil R D, Fox R O 2008 Ind. Eng. Chem. Res. 47 3338Google Scholar

    [17]

    Motohashi R, Hanasaki I, Ooi Y, Matsuda Y 2017 Micro Nano Lett. 12 506Google Scholar

    [18]

    Boyer D, Dean D S, Mejia-Monasterio C, Oshanin G 2012 Phys. Rev. E 86 60101Google Scholar

    [19]

    Xavier M 2010 Phys. Rev. E 82 041914Google Scholar

    [20]

    Abascal J L, Vega C 2005 J. Chem. Phys. 123 234505Google Scholar

    [21]

    Arnold A, Fahrenberger F, Holm C, Lenz O, Bolten M, Sutmann G 2013 Phys. Rev. E 88 63308Google Scholar

    [22]

    Folies S M, Baskets M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [23]

    Gonzalez M A, Abascal J L F 2010 J. Chem. Phys. 132 96101Google Scholar

    [24]

    Harris K R, Woolf L A 2004 J. Chem. Eng. Data 49 1064Google Scholar

    [25]

    Li T, Raizen M G 2013 Ann. Phys. 525 281Google Scholar

    [26]

    Ernst D, Kohler 2013 Phys. Chem. Chem. Phys. 15 845Google Scholar

    [27]

    Pranami G, Lamm M H 2015 J. Chem. Theory Comput. 11 4586Google Scholar

    [28]

    张世良, 戚力, 高伟, 冯士东, 刘日平 2015 燕山大学学报 39 213Google Scholar

    Zhang S L, Qi L, Gao W, Feng S D, Liu R P 2015 J. Yanshan Univ. 39 213Google Scholar

  • 图 1  球形颗粒在不同边界条件下的平动摩擦系数, 颗粒向右运动 (a)黏性边界条件; (b)光滑边界条件

    Fig. 1.  Translational friction coefficients of spherical particles under different boundary conditions and the particle move to the right: (a) Translational friction coefficient for stick boundary; (b) translational friction coefficient for slip boundary.

    图 2  (a) Cu-H2O纳米流体的物理模型; (b) TIP4P/2005水分子结构示意图

    Fig. 2.  (a) Physical model of Cu-H2O nanofluid; (b) schematic diagram of TIP4P/2005 water.

    图 3  水分子模型的验证 (a) NPT系综下体系的温度随时间变化; (b) NPT系综下体系的总能量随时间变化

    Fig. 3.  Validation of water molecular model: (a) Curve of temperature over time; (b) total energy of the system over time.

    图 4  单颗粒布朗运动轨迹

    Fig. 4.  Brownian motion trajectory of a single particle.

    图 5  半径a = 1 nm的Cu颗粒在不同关联时间下扩散系数分布

    Fig. 5.  Diffusion coefficient distribution of Cu particles with radius a =1 nm at different correlation time.

    图 6  半径a = 1 nm的Cu纳米颗粒在采用不同拟合点拟合时扩散系数的变异系数, 关联时间Nt = 1363 ps

    Fig. 6.  Variation coefficient of the diffusion coefficient of Cu nanoparticles with radius a =1 nm when different fitting points were used for fitting, correlation time Nt = 1363 ps.

    图 7  纳米颗粒的平动扩散特性 (a)不同尺寸Cu纳米颗粒的平动扩散系数; (b)不同尺寸Cu纳米颗粒的平动摩擦因子

    Fig. 7.  Translational diffusion characteristics of nanoparticles: (a) Translational diffusion coefficients of Cu nanoparticles with different sizes; (b) translational friction factors of Cu nanoparticles of different sizes.

    图 8  颗粒旋转扩散系数计算的物理模型

    Fig. 8.  Physical model for particle rotation diffusion coefficient calculation.

    图 9  不同半径的Cu纳米颗粒的均方旋转角度

    Fig. 9.  Mean-square rotation angles of Cu nanoparticles with different sizes.

    图 10  颗粒旋转扩散特性 (a)颗粒的转动扩散系数; (b) 颗粒转动扩散摩擦因子

    Fig. 10.  Rotational diffusion characteristics of particles: (a) Rotational diffusion coefficients of particle; (b) rotational friction factors of particle.

    图 11  纳米颗粒周围水分子的RDF (a) RDF计算的物理模型; (b)不同尺寸的颗粒周围水分子的RDF曲线

    Fig. 11.  Radial distribution function (RDF) of water molecules around nanoparticles: (a) Physical model for RDF calculation; (b) RDF curves of water molecules around particles of different sizes.

    表 1  各工况下模拟域大小与原子数目

    Table 1.  The size of the simulation domain and number of atoms of different working conditions.

    颗粒半
    径/nm
    Cu原
    子数
    H2O分
    子数
    总原
    子数
    模拟域大小
    Lx × Ly × Lz3
    0.543971295630 × 30 × 30
    1.035173802384160 × 60 × 60
    1.5119974592357660 × 60 × 60
    2.02928143814597275 × 75 × 75
    下载: 导出CSV

    表 2  Cu-H2O纳米流体势能参数

    Table 2.  Potential energy parameter of Cu-H2O nanofluid.

    参数取值
    εo—o/eV0.00803
    σo—o3.1589
    εCu—o /eV0.052
    σCu—o2.743
    下载: 导出CSV
  • [1]

    Brown R 1828 Philos. Mag. 4 161Google Scholar

    [2]

    Einstein A 1905 Ann. Phys. 17 549

    [3]

    Bian X, Kim C, Karniadakis G E 2016 Soft Matter 12 01Google Scholar

    [4]

    Tao Q, Luigi G R 2016 Mathematical Analysis Probability and Applications-Plenary Lectures (New York: Springer International Publishing) p2

    [5]

    王亮, 卢宇源, 安立佳 2017 应用化学 34 1250Google Scholar

    Wang L, Lu Y Y, An L J 2017 Chin. J. Appl. Chem. 34 1250Google Scholar

    [6]

    Hu C M, Zwanzig R 1974 J. Chem. Phys. 60 4354Google Scholar

    [7]

    Edward J T 1970 J. Chem. Educ. 47 261Google Scholar

    [8]

    Richardson S 2006 J. Fluid Mech. 59 707

    [9]

    Ollila S T T, Smith C J, Ala-Nissila T, Denniston C 2013 Multiscale Model. Simul. 11 213Google Scholar

    [10]

    Vargas-Lara F, Starr F W, Douglas J F 2016 AIP Publishing LLC 1736 020080Google Scholar

    [11]

    Nisha M R, Philip J 2013 Phys. Scr. 88 15602Google Scholar

    [12]

    Velasco-Velez J J, Wu C H, Pascal T A, Wan L F, Guo J, Prendergast D, Salmeron M 2014 Science 346 831Google Scholar

    [13]

    Vasanthi R, Ravichandran S, Bagchi B 2001 J. Chem. Phys. 114 7989Google Scholar

    [14]

    Vasanthi R, Bhattacharyya S, Bagchi B 2002 J. Chem. Phys. 116 1092Google Scholar

    [15]

    何昱辰, 刘向军 2014 力学学报 46 871Google Scholar

    He Y C, Liu X J 2014 Acta Mech. Sin. 46 871Google Scholar

    [16]

    Markutsya S, Subramaniam S, Vigil R D, Fox R O 2008 Ind. Eng. Chem. Res. 47 3338Google Scholar

    [17]

    Motohashi R, Hanasaki I, Ooi Y, Matsuda Y 2017 Micro Nano Lett. 12 506Google Scholar

    [18]

    Boyer D, Dean D S, Mejia-Monasterio C, Oshanin G 2012 Phys. Rev. E 86 60101Google Scholar

    [19]

    Xavier M 2010 Phys. Rev. E 82 041914Google Scholar

    [20]

    Abascal J L, Vega C 2005 J. Chem. Phys. 123 234505Google Scholar

    [21]

    Arnold A, Fahrenberger F, Holm C, Lenz O, Bolten M, Sutmann G 2013 Phys. Rev. E 88 63308Google Scholar

    [22]

    Folies S M, Baskets M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [23]

    Gonzalez M A, Abascal J L F 2010 J. Chem. Phys. 132 96101Google Scholar

    [24]

    Harris K R, Woolf L A 2004 J. Chem. Eng. Data 49 1064Google Scholar

    [25]

    Li T, Raizen M G 2013 Ann. Phys. 525 281Google Scholar

    [26]

    Ernst D, Kohler 2013 Phys. Chem. Chem. Phys. 15 845Google Scholar

    [27]

    Pranami G, Lamm M H 2015 J. Chem. Theory Comput. 11 4586Google Scholar

    [28]

    张世良, 戚力, 高伟, 冯士东, 刘日平 2015 燕山大学学报 39 213Google Scholar

    Zhang S L, Qi L, Gao W, Feng S D, Liu R P 2015 J. Yanshan Univ. 39 213Google Scholar

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离. 物理学报, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [3] 熊磊, 丁洪伟, 李光元. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式. 物理学报, 2022, 71(4): 047802. doi: 10.7498/aps.71.20211629
    [4] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [5] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [6] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [7] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [8] 孟伟东, 孙丽存, 翟影, 杨瑞芬, 普小云. 用液芯柱透镜快速测量液相扩散系数-折射率空间分布瞬态测量法. 物理学报, 2015, 64(11): 114205. doi: 10.7498/aps.64.114205
    [9] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [10] 李强, 普小云. 用毛细管成像法测量液相扩散系数——等折射率薄层测量方法. 物理学报, 2013, 62(9): 094206. doi: 10.7498/aps.62.094206
    [11] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [12] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [13] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [14] 王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀. 纳米颗粒吸附岩心表面的强疏水特征. 物理学报, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [15] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究. 物理学报, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [16] 陈慧敏, 刘恩隆. 纳米颗粒与纳米块材摩尔定压热容的理论计算. 物理学报, 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [17] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [18] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并. 物理学报, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [19] 王振中, 王楠, 姚文静. 低扩散系数对Pd77Cu6Si17合金易非晶化的影响. 物理学报, 2010, 59(10): 7431-7436. doi: 10.7498/aps.59.7431
    [20] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
计量
  • 文章访问数:  8520
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-03-12
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-07-20

/

返回文章
返回