搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衬底浮空的新型绝缘体上硅基横向功率器件分析

唐春萍 段宝兴 宋坤 王彦东 杨银堂

引用本文:
Citation:

衬底浮空的新型绝缘体上硅基横向功率器件分析

唐春萍, 段宝兴, 宋坤, 王彦东, 杨银堂

Analysis of novel silicon based lateral power devices with floating substrate on insulator

Tang Chun-Ping, Duan Bao-Xing, Song Kun, Wang Yan-Dong, Yang Yin-Tang
PDF
HTML
导出引用
  • 针对有机半导体领域的发展要求, 报道了一种能够应用于有机半导体领域衬底浮空的新型SOI LDMOS (silicon on insulator lateral double-diffused metal oxide semiconductor)功率器件, 不同于传统无机半导体中SOI LDMOS功率器件, 该新型器件可以与绝缘的柔性衬底结合应用于有机半导体领域, 这给有机半导体领域的研究方向提供了新的可能. 本文通过仿真和流片实验共同验证了当常规SOI LDMOS缺失衬底电极后, 比导通电阻和阈值电压均无明显变化, 但击穿电压会因为缺失衬底电极和纵向电场而下降15%左右. 针对该现象提出了一个具有表面衬底电极和漂移区氧化槽的新型SOI LDMOS功率器件, 该新型器件能够重新给衬底提供电极、优化横纵向电场、不明显改变比导通电阻与阈值电压, 同时将常规SOI LDMOS的击穿电压提高57.54%, 缓解了应用于有机半导体领域带来的不良影响. 为传统功率半导体应用于有机半导体领域的研究提供了可能, 对于有机半导体研究领域的拓展具有创新意义.
    With the rapid development of the traditional inorganic semiconductor industry, the improvement of its electrical performance is gradually approaching to the limit. It is difficult to continue to improve the performance, lessen the size, and reduce the cost. Therefore, organic semiconductor materials and devices with simple process and low cost have been found and gradually become a new research hotspot. Although organic semiconductor materials and devices are developing rapidly, their electrical properties, such as carrier mobility, are considerably inferior to those of inorganic semiconductors, and their research direction and application prospect are relatively fixed and single. They are developed only in display, sensing, photoelectric conversion and other fields, but the researches on switching power devices, integrated circuits and other fields are still relatively blank. At the same time, power devices are used only in the field of inorganic semiconductors. Therefore, in order to expand the research direction of organic semiconductors and power devices at the same time, a novelsilicon on insulator lateral double-diffused metal oxide semiconductor (SOI LDMOS)power device is reported in this paper. Unlike the SOI LDMOS power devices in traditional inorganic semiconductors, this novel device can be used in the field of organic semiconductors by combining with insulated flexible substrates, which provides a new possibility for the research direction of organic semiconductors. In this paper, both simulation and experiment verify that specific on-resistance (RON,sp) and threshold voltage (VTH) do not change significantly when the conventional SOI LDMOS lacks the substrate electrode, but the breakdown voltage decreases by about 15% due to the absence of the substrate electrode or the longitudinal electric field. In response to this phenomenon, in this paper proposed is a novel SOI LDMOS power device that possesses surface substrate electrodes and drift zone oxide trenches. This novel device can provide electrodes for the substrate again, optimize the horizontal and vertical electric field, and significantly change neither of the RON,sp and the VTH. At the same time, the breakdown voltage (BV) of conventional SOI LDMOS is increased by 57.54%, which alleviates the adverse effects caused by the application in the field of organic semiconductors. This novel SOI LDMOS power device provides the possibility of applying traditional power semiconductors to the research of organic semiconductors, and has innovative significance for expanding the organic semiconductor research.
      通信作者: 段宝兴, bxduan@163.com
    • 基金项目: 陕西省杰出青年学者科学基金(批准号: 2018JC-017)和111项目(批准号: B12026)资助的课题
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2018JC-017) and the 111 Project, China (Grant No. B12026)
    [1]

    李琦, 李肇基, 张波 2007 物理学报 56 6660Google Scholar

    Li Q, Li Z J, Zhang B 2007 Acta Phys. Sin. 56 6660Google Scholar

    [2]

    Lei J M, Hu S D, Wang S, Lin Z 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC) Hsinchu, China, October 18−20, 2017 p1

    [3]

    Okawa T, Eguchi H, Taki M, Hamada K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12−16, 2016 p435

    [4]

    Cheng J J, Wu S Y, Chen W Z, Huang H M, Yi B 2019 IEEE J. Electron Devices Soc. 7 682Google Scholar

    [5]

    Xia C, Cheng X H, Wang Z J, Xu D W, Cao D, Zheng L, Shen L Y, Yu Y H, Shen D S 2014 IEEE Trans. Electron Devices 61 3477Google Scholar

    [6]

    Fang Z Q, Xu Z Z, Qian W S 2019 China Semiconductor Technology International Conference (CSTIC) Shanghai, China, March 18−19, 2019 p1

    [7]

    Tang P P, Wang Y, Bao M T, Luo X, Cao F, Yu C H 2019 Micro & Nano Letters 14 420

    [8]

    Dong Z M, Duan B X, Fu C, Guo H J, Cao Z, Yang Y T 2018 IEEE Electron Device Lett. 39 1358Google Scholar

    [9]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron Device Lett. 41 1681Google Scholar

    [10]

    Duan B X, Cao Z, Yuan X N, Yuan S, Yang Y T 2015 IEEE Electron Device Lett. 36 47Google Scholar

    [11]

    Xu Q, Guo Y F, Zhang Y, Liu L L, Yao J F, Sheu G 2012 Procedia Eng. 29 668Google Scholar

    [12]

    段宝兴, 曹震, 袁小宁, 杨银堂 2014 物理学报 63 227302Google Scholar

    Duan B X, Cao Z, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 227302Google Scholar

    [13]

    Zhang B, Cheng J B, Qiao M, Li Z J 2008 9th International Conference on Solid-State and Integrated-Circuit Technology Beijing, China, October 20−23, 2008 p164

    [14]

    Cao Z, Duan B X, Shi T T, Dong Z M, Guo H J, Yang Y T 2018 IEEE Trans. Electron Devices 65 2565Google Scholar

    [15]

    Cao Z, Duan B X, Yuan S, Guo H J, Lv J M, Shi T T, Yang Y T 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD) Sapporo, Japan, May 28–June 1, 2017 p283

    [16]

    Cao Z, Duan B X, Shi T T, Yuan S, Yang Y T 2018 IETE Tech. Rev. 35 402Google Scholar

    [17]

    段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂 2015 物理学报 64 067304Google Scholar

    Duan B X, Li C L, Ma J C, Yuan S, Yang Y T 2015 Acta Phys. Sin. 64 067304Google Scholar

    [18]

    Wu L J, Zhang W T, Shi Q, Cai P F, He H C 2014 Electron. Lett. 50 1982Google Scholar

    [19]

    Duan B X, Li M Z, Dong Z M, Wang Y D, Yang Y T 2019 IEEE Trans. Electron Devices 66 4836Google Scholar

    [20]

    Wu L J, Wu Y Q, Lei B, Zhang Y Y, Huang Y, Zhu L 2019 Micro & Nano Letters 14 600Google Scholar

    [21]

    Cao Z, Duan B X, Song H T, Xie F Y, Yang Y T 2019 IEEE Trans. Electron Devices 66 2327Google Scholar

    [22]

    Tsai C C 2011 16th Opto-Electronics and Communications Conference Kaohsiung, China, July 4−8, 2011 p370

    [23]

    Zhang J 2018 International Flexible Electronics Technology Conference (IFETC) Ottawa, Canada, August 7−9, 2018 p1

    [24]

    Kadija I 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC) Pisa, Italy, September 16−19 2019 p1

    [25]

    Guo S N, Cheng J J, Chen X B 2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS) Toulouse, France, July 9−12, 2019 p1

    [26]

    Cao Z, Jiao L C 2020 IEEE J. Electron Devices Soci. 8 890Google Scholar

  • 图 1  两种器件结构示意图 (a) 常规SOI LDMOS结构; (b) 带有表面衬底电极和漂移区氧化槽的新型SOI LDMOS结构

    Fig. 1.  The schematic diagrams of the two devices are as follows: (a) Conventional SOI LDMOS structure; (b) a novel SOI LDMOS structure with a surface electrode and a drift oxidation groove.

    图 2  实验结果 (a) 8 in晶片; 电子扫描显微镜下的SOI LDMOS结构截面图(b)和俯视图(c)

    Fig. 2.  Experimental results: (a) 8-inch wafer; (b) sectional view and (c) vertical view of SOI LDMOS under an electron scanning microscope.

    图 3  衬底厚度Tsub = 15 μm, 漂移区长度LD = 4 μm的SOI LDMOS电场分布图 (a) 表面电场分布图; (b) 纵向电场分布图

    Fig. 3.  Electric field distribution graph for SOI LDMOS with substrate thickness of 15 μm (Tsub = 15 μm) and drift zone length of 4 μm (LD = 4 μm): (a) Surface electric field distribution graph; (b) longitudinal electric field distribution graph.

    图 4  衬底厚度Tsub = 15 μm, 漂移区长度LD = 4 μm的SOI LDMOS仿真和实验结果对比 (a) VGS = 5 V时的输出特性曲线; (b) VDS = 10 V时的转移特性曲线

    Fig. 4.  Comparison of simulation and experimental results for SOI LDMOS with substrate thickness of 15 μm (Tsub = 15 μm) and drift zone length of 4 μm (LD = 4 μm): (a) Output characteristic curve when VGS = 5 V; (b) transfer characteristic curve when VDS = 10 V.

    图 5  SOI LDMOS击穿特性的仿真和实验结果对比图

    Fig. 5.  SOI LDMOS comparison of simulation and experimental results of breakdown characteristics.

    图 6  漂移区掺杂浓度对SOI LDMOS两种结构对应的击穿电压的影响

    Fig. 6.  Effect of doping concentration in drift region on breakdown voltage of two SOI LDMOS structures.

    图 7  几种SOI LDMOS的电场分布图 (a) 表面电场分布图; (b) 纵向电场分布图

    Fig. 7.  Electric field distribution of several SOI LDMOS: (a) Surface electric field distribution; (b) longitudinal electric field distribution diagram.

    图 8  几种SOI LDMOS的击穿特性图

    Fig. 8.  Breakdown characteristics of several SOI LDMOS.

    图 9  几种SOI LDMOS的仿真结果 (a) 输出特性曲线; (b) 转移特性曲线

    Fig. 9.  Simulation results of several SOI LDMOS: (a) Output characteristic curve; (b) transfer characteristic curve.

    图 10  新型SOI LDMOS的几种参数对BV和RON, sp的影响 (a) ND的影响曲线; (b) DOX的影响曲线; (c) TOX的影响曲线

    Fig. 10.  Influence of several parameters of new SOI LDMOS on BV, RON,sp: (a) Influence curve of ND; (b) influence curve of DOX; (c) influence curve of TOX.

    表 1  常规SOI LDMOS与衬底浮空SOI LDMOS器件仿真最优参数

    Table 1.  Simulation optimal parameters of conventional SOI LDMOS/ substrate floating SOI LDMOS devices.

    器件最优参数(仿真)常规SOI LDMOS/衬底
    浮空SOI LDMOS
    漂移区厚度Td/μm2
    埋氧层厚度TOX/μm2
    衬底厚度Tsub/μm15
    漂移区N型掺杂浓度, Nd/cm–31.5 × 1016
    衬底P型掺杂浓度Psub/cm–32 × 1014
    阱区P型掺杂浓度Pwell/cm–31.5 × 1016
    下载: 导出CSV

    表 2  新型SOI LDMOS器件仿真最优参数

    Table 2.  Simulation optimal parameters for novel SOI LDMOS devices.

    器件最优参数(仿真)新型SOI LDMOS
    漂移区厚度TD/μm2
    埋氧层厚度TOX/μm2
    衬底厚度Tsub/μm15
    氧化槽宽度WT/μm3
    氧化槽深度DT/μm0.6
    漂移区N型掺杂浓度ND/(1014 cm–3)5
    衬底P型掺杂浓度Psub/(1014 cm–3)4
    阱区P型掺杂浓度Pwell/(1016 cm–3)6
    下载: 导出CSV
  • [1]

    李琦, 李肇基, 张波 2007 物理学报 56 6660Google Scholar

    Li Q, Li Z J, Zhang B 2007 Acta Phys. Sin. 56 6660Google Scholar

    [2]

    Lei J M, Hu S D, Wang S, Lin Z 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC) Hsinchu, China, October 18−20, 2017 p1

    [3]

    Okawa T, Eguchi H, Taki M, Hamada K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12−16, 2016 p435

    [4]

    Cheng J J, Wu S Y, Chen W Z, Huang H M, Yi B 2019 IEEE J. Electron Devices Soc. 7 682Google Scholar

    [5]

    Xia C, Cheng X H, Wang Z J, Xu D W, Cao D, Zheng L, Shen L Y, Yu Y H, Shen D S 2014 IEEE Trans. Electron Devices 61 3477Google Scholar

    [6]

    Fang Z Q, Xu Z Z, Qian W S 2019 China Semiconductor Technology International Conference (CSTIC) Shanghai, China, March 18−19, 2019 p1

    [7]

    Tang P P, Wang Y, Bao M T, Luo X, Cao F, Yu C H 2019 Micro & Nano Letters 14 420

    [8]

    Dong Z M, Duan B X, Fu C, Guo H J, Cao Z, Yang Y T 2018 IEEE Electron Device Lett. 39 1358Google Scholar

    [9]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron Device Lett. 41 1681Google Scholar

    [10]

    Duan B X, Cao Z, Yuan X N, Yuan S, Yang Y T 2015 IEEE Electron Device Lett. 36 47Google Scholar

    [11]

    Xu Q, Guo Y F, Zhang Y, Liu L L, Yao J F, Sheu G 2012 Procedia Eng. 29 668Google Scholar

    [12]

    段宝兴, 曹震, 袁小宁, 杨银堂 2014 物理学报 63 227302Google Scholar

    Duan B X, Cao Z, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 227302Google Scholar

    [13]

    Zhang B, Cheng J B, Qiao M, Li Z J 2008 9th International Conference on Solid-State and Integrated-Circuit Technology Beijing, China, October 20−23, 2008 p164

    [14]

    Cao Z, Duan B X, Shi T T, Dong Z M, Guo H J, Yang Y T 2018 IEEE Trans. Electron Devices 65 2565Google Scholar

    [15]

    Cao Z, Duan B X, Yuan S, Guo H J, Lv J M, Shi T T, Yang Y T 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD) Sapporo, Japan, May 28–June 1, 2017 p283

    [16]

    Cao Z, Duan B X, Shi T T, Yuan S, Yang Y T 2018 IETE Tech. Rev. 35 402Google Scholar

    [17]

    段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂 2015 物理学报 64 067304Google Scholar

    Duan B X, Li C L, Ma J C, Yuan S, Yang Y T 2015 Acta Phys. Sin. 64 067304Google Scholar

    [18]

    Wu L J, Zhang W T, Shi Q, Cai P F, He H C 2014 Electron. Lett. 50 1982Google Scholar

    [19]

    Duan B X, Li M Z, Dong Z M, Wang Y D, Yang Y T 2019 IEEE Trans. Electron Devices 66 4836Google Scholar

    [20]

    Wu L J, Wu Y Q, Lei B, Zhang Y Y, Huang Y, Zhu L 2019 Micro & Nano Letters 14 600Google Scholar

    [21]

    Cao Z, Duan B X, Song H T, Xie F Y, Yang Y T 2019 IEEE Trans. Electron Devices 66 2327Google Scholar

    [22]

    Tsai C C 2011 16th Opto-Electronics and Communications Conference Kaohsiung, China, July 4−8, 2011 p370

    [23]

    Zhang J 2018 International Flexible Electronics Technology Conference (IFETC) Ottawa, Canada, August 7−9, 2018 p1

    [24]

    Kadija I 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC) Pisa, Italy, September 16−19 2019 p1

    [25]

    Guo S N, Cheng J J, Chen X B 2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS) Toulouse, France, July 9−12, 2019 p1

    [26]

    Cao Z, Jiao L C 2020 IEEE J. Electron Devices Soci. 8 890Google Scholar

  • [1] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计. 物理学报, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] 徐大林, 王玉琦, 李新化, 史同飞. 电荷耦合效应对高耐压沟槽栅极超势垒整流器击穿电压的影响. 物理学报, 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [3] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响. 物理学报, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [4] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [5] 赵逸涵, 段宝兴, 袁嵩, 吕建梅, 杨银堂. 具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管. 物理学报, 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [6] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [7] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件. 物理学报, 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [8] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究. 物理学报, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [9] 段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂. 阶梯氧化层新型折叠硅横向双扩散功率器件. 物理学报, 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [10] 段宝兴, 曹震, 袁小宁, 杨银堂. 具有N型缓冲层REBULF Super Junction LDMOS. 物理学报, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [11] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件. 物理学报, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [12] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [13] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构. 物理学报, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [14] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [15] 王骁玮, 罗小蓉, 尹超, 范远航, 周坤, 范叶, 蔡金勇, 罗尹春, 张波, 李肇基. 高k介质电导增强SOI LDMOS机理与优化设计. 物理学报, 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [16] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [17] 杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽. 具有部分超结的新型SiC SBD特性分析. 物理学报, 2010, 59(1): 566-570. doi: 10.7498/aps.59.566
    [18] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型. 物理学报, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性. 物理学报, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
计量
  • 文章访问数:  4649
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-06
  • 修回日期:  2021-03-03
  • 上网日期:  2021-07-09
  • 刊出日期:  2021-07-20

/

返回文章
返回