搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有超低比导通电阻的双漂移区双导通路径新型LDMOS

段宝兴 任宇壕 唐春萍 杨银堂

引用本文:
Citation:

具有超低比导通电阻的双漂移区双导通路径新型LDMOS

段宝兴, 任宇壕, 唐春萍, 杨银堂

A Novel LDMOS with Dual-Drift and Dual-Conduction Path Achieves an Ultra-Low Specific On-Resistance

DUAN Baoxing, REN Yuhao, TANG Chunping, YANG Yintang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 本文提出了一种具有双漂移区和双导通路径的新型LDMOS器件,实现了超低比导通电阻Ron,sp。其特点在于,漂移区采用P型和N型纵向交替所构成的双漂移区结构,并引入平面栅和槽型栅分别控制P型和N型漂移区,使得器件能够在漂移区中形成两条独立的电子导通或消失路径。在对平面栅施加正向电压时,可使P型漂移区的表面发生反型,形成连接沟道和N+漏极的高浓度电子反型层,从而极大提高器件导通时的电子密度,降低比导通电阻。槽型栅极的引入可使器件在关断时产生一条额外的电子消失路径,从而缩短器件的关断时间toff。此外,由于引入P型漂移区,使得电子在P型漂移区内输运时与其体内的空穴发生复合,从而加快了电子的消失过程并进一步地缩短器件的toff。仿真结果表明,在200V的击穿电压BV等级下,本文所提出的新型LDMOS的Ron,sp为3.43mΩ·cm2,关断时间为9ns。相比传统的LDMOS器件,Ron,sptoff分别下降了90%,11.6%。该器件不仅实现了Ron,spBV的良好折中,而且缩短了器件的toff,展现出了优异的器件性能。
    In order to improve the contradictory between Specific On-resistance (Ron,sp) and Breakdown voltage (BV) of LDMOS, and enhance the turn-off characteristic, this paper proposes a novel LDMOS device with dual-drift regions and dual-conduction paths, which achieves an ultra-low Ron,sp. The key feature of the proposed device is the introduction of a dual-drift region structure with alternating P-type and N-type regions, along with the incorporation of planar and trench gates to control the P-type and N-type drift regions, respectively. This configuration enables the formation of two independent electron conduction paths within the drift region. When a positive voltage is applied to the planar gate, a voltage difference generated between the surface of the P-type drift region and the body of device’s drift. Thereby, under the impact of the voltage difference, the electrons are pulled to the surface of the P-type drift region to inverts and forms a high-density electron inversion layer that connects the channel and the N+ drain, which significantly increases the electron density during conduction and reduces the Ron,sp. The introduction of the trench gate provides an additional electron disappearance path, which shortens the device's turn-off time (toff). Furthermore, the introduction of the P-type drift region facilitates the recombination of electrons with holes within the P-type drift region, accelerating the electron disappearance process and further reducing the device'stoff. What’s more, the proposed device exhibits a more uniform electric field distribution and higher voltage capability is due to the P+N-N+P+ structure adopted in the PolySi-top layer. During the off-state, each of the P+N- junction and the N+P+ junction generate an electric field peak at the interface, which modulates the electric field distribution on the surface of the drift region. Simulation results indicate that at a Breakdown Voltage (BV) level of 200V, the proposed LDMOS exhibits a Ron,sp of 3.43 mΩ·cm² and a toff of 9 ns. Compared to conventional LDMOS devices, there is a 90% reduction in Ron,sp and an 11.6% decrease in toff. The proposed device not only achieves an excellent trade-off between Ron,sp and BV but also shortens the toff, demonstrating the device achieved superior performance.
  • [1]

    Kong M, Yi B, Zhang B 2019IEEE Trans. Electron Devices 66 592

    [2]

    Disney D, Chan W, Lam R, Blattner R, Ma S, Seng W, Chen J W, Cornell M, Williams R 2008 20th International Symposium on Power Semiconductor Devices and IC’s, 2008-05 pp24–27

    [3]

    Sun W, Shi L, Sun Z, Yi Y, Li H, Lu S 2006IEEE Trans. Electron Devices 53 891

    [4]

    Erlbacher T, Bauer A J, Frey L 2010IEEE Electron Device Lett. 31 464

    [5]

    Qiao M, Li Y, Zhou X, Li Z, Zhang B 2014IEEE Electron Device Lett. 35 774

    [6]

    Baliga B J 2001Proc. IEEE 89 822

    [7]

    Efland T R, Tsai C Y, Pendharkar S 1998International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217), 1998-12 pp679–682

    [8]

    Li M, Chen D, Jung D S, Shi X 20192019 China Semiconductor Technology International Conference, 2019-03 pp1–3

    [9]

    Baliga B J 2023Springer Handbook of Semiconductor Devices Cham, 2023 pp491–523

    [10]

    Baliga B J 2019 Fundamentals of Power Semiconductor Devices (Cham: Springer International Publishing)

    [11]

    Appels J A, Vaes H M J 19791979 International Electron Devices Meeting, 1979-12 pp238–241

    [12]

    Hossain Z 2008200820th International Symposium on Power Semiconductor Devices and IC’s, 2008-05 pp133–136

    [13]

    Xiarong H, Bo Z, Xiaorong L, Guoliang Y, Xi C, Zhaoji L 2011J. Semicond. 32 074006

    [14]

    Hardikar S, Tadikonda R, Green D W, Vershinin K V, Narayanan E M S 2004IEEE Transactions on Electron Devices 51 2223

    [15]

    Stengl R, Gosele U 19851985 International Electron Devices Meeting, 1985-12 pp154–157

    [16]

    Duan B, Xing L, Wang Y, Yang Y 2022IEEE Trans. Electron Devices 69 658

    [17]

    Chen Y, Hu S, Cheng K, Jiang Y, Luo J, Wang J, Tang F, Zhou X, Zhou J, Gan P 2016Superlattices and Microstructures 89 59

    [18]

    Fujihira T 1997Jpn. J. Appl. Phys. 36 6254

    [19]

    Chen X B 2000CHINESE JOURNAL OF ELECTRONICS 9 6

    [20]

    Baliga B J, Syau T, Venkatraman P 1992IEEE Electron Device Lett. 13 427

    [21]

    Wang Y, Duan B, Song H, Yang Y 2021IEEE Trans. Electron Devices 68 2414

    [22]

    Inc. Synopsys 2016 SentaurusTM Device User Guide Verison L-2016.03

    [23]

    Chen W, Qin H, Zhang H, Han Z 2022IEEE Trans. Electron Devices 69 1900

    [24]

    Zhou K, Luo X, Li Z, Zhang B 2015IEEE Trans. Electron Devices 62 3334

    [25]

    Cao Z, Sun Q, Zhang H, Wang Q, Ma C, Jiao L 2022Micromachines 13 843

    [26]

    Cheng J, Zhang B, Li Z 2008IEEE Electron Device Letters 29 645

    [27]

    Chen Y M, Lee C L, Tsai M H, Lee C T, Wang C C 20182018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs, 2018-05 pp331–334

    [28]

    Zhang S, Tuan H C, Wu X J, Shi L, Wu J 2016Microelectron. Reliab. 61 125

    [29]

    Chen W, Pjencak J, Agam M, Janssens J, Jerome R, Menon S, Griswold M 2021202133rd International Symposium on Power Semiconductor Devices and ICs, 2021-05 pp287–290

    [30]

    Qiao M, Liu W, Yuan L, Xu P, Ma C, Lin F, Liu K, Guo Y, Lin Z, Zhang S, Zhang B 20222022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs, 2022-05-22 pp149–152

    [31]

    Kong M, Yi B, Chen X 20192019 IEEE 13th International Conference on Power Electronics and Drive Systems, 2019-07 pp1–4

    [32]

    Fan J, Wang Z G, Zhang B, Luo X R 2013 Chin. Phys. B 22 048501

    [33]

    Honarkhah S, Nassif-Khalil S, Salama C A T 2004Proceedings of the 30th European Solid-State Circuits Conference, 2004-09 pp117–120

    [34]

    Hölke A, Antoniou M, Udrea F 202032nd International Symposium on Power Semiconductor Devices and ICs, 2020-09 pp435–438

  • [1] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计. 物理学报, doi: 10.7498/aps.71.20211917
    [2] 徐大林, 王玉琦, 李新化, 史同飞. 电荷耦合效应对高耐压沟槽栅极超势垒整流器击穿电压的影响. 物理学报, doi: 10.7498/aps.70.20201558
    [3] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响. 物理学报, doi: 10.7498/aps.70.20210086
    [4] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, doi: 10.7498/aps.64.237302
    [5] 李春来, 段宝兴, 马剑冲, 袁嵩, 杨银堂. 具有P型覆盖层新型超级结横向双扩散功率器件. 物理学报, doi: 10.7498/aps.64.167304
    [6] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究. 物理学报, doi: 10.7498/aps.64.105101
    [7] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件. 物理学报, doi: 10.7498/aps.64.187303
    [8] 段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂. 阶梯氧化层新型折叠硅横向双扩散功率器件. 物理学报, doi: 10.7498/aps.64.067304
    [9] 段宝兴, 曹震, 袁小宁, 杨银堂. 具有N型缓冲层REBULF Super Junction LDMOS. 物理学报, doi: 10.7498/aps.63.227302
    [10] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, doi: 10.7498/aps.63.057302
    [11] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构. 物理学报, doi: 10.7498/aps.63.107302
    [12] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件. 物理学报, doi: 10.7498/aps.63.247301
    [13] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, doi: 10.7498/aps.63.237305
    [14] 王骁玮, 罗小蓉, 尹超, 范远航, 周坤, 范叶, 蔡金勇, 罗尹春, 张波, 李肇基. 高k介质电导增强SOI LDMOS机理与优化设计. 物理学报, doi: 10.7498/aps.62.237301
    [15] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, doi: 10.7498/aps.61.227302
    [16] 杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽. 具有部分超结的新型SiC SBD特性分析. 物理学报, doi: 10.7498/aps.59.566
    [17] 李 琦, 张 波, 李肇基. 漂移区表面阶梯掺杂LDMOS的击穿电压模型. 物理学报, doi: 10.7498/aps.57.1891
    [18] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, doi: 10.7498/aps.56.2895
    [19] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型. 物理学报, doi: 10.7498/aps.56.6660
    [20] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性. 物理学报, doi: 10.7498/aps.55.3003
计量
  • 文章访问数:  23
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回