搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光诱导磁子态调控的宽频带非互易传输

陈志坚 赵恺欣 王辰笑 魏纯可 姚碧霂

引用本文:
Citation:

光诱导磁子态调控的宽频带非互易传输

陈志坚, 赵恺欣, 王辰笑, 魏纯可, 姚碧霂

Broadband nonreciprocal transmission tuned by pump-induced magnon modes

CHEN Zhijian, ZHAO Kaixin, WANG Chenxiao, WEI Chunke, YAO Bimu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本研究提出了一种通过引入多个调制泵浦信号来灵活调控微波非互易隔离带的方法, 从而将常规的单模式的磁子非互易传输拓展到了宽频调节的范畴. 具体地, 本研究通过在腔磁子系统中激发多个光诱导磁子态, 并使其与连续域束缚态发生强耦合, 形成多个杂化模式, 实现了对非互易通道数量和隔离区域的精确控制. 该方法无需依赖静磁场调节, 能够实现独立的多通道非互易隔离带, 以及泵浦可调的带通和带阻隔离, 而不依赖于对系统的重构. 这显著提升了非互易频带的调节能力和系统的灵活性, 为开发多通道、可调谐的非互易器件在信息处理中的应用奠定了技术基础.
    Nonreciprocal electromagnetic wave transmission is essential for wireless communication, quantum computing, and radar systems, traditionally relying on breaking time-reversal symmetry through static magnetic fields or structural modifications, which face limitations in tunability and integration. Recent advancements in cavity magnonics, particularly the use of bound states in the continuum (BIC) and pump-induced magnon mode (PIM), have enhanced the nonreciprocal isolation and dynamic control of magnon dynamics. In this study, a novel method to achieve broadband-tunable microwave nonreciprocal isolation is presented by introducing multiple modulated pump signals, thereby extending traditional single-mode magnon-based nonreciprocal transmission to multi-channel and broadband regimes. The core method involves exciting multiple PIMs in a cavity magnonics system and strongly coupling them with BIC to generate hybrid modes with pronounced nonreciprocal characteristics. The experimental setup is comprised of a 1-millimeter-diameter yttrium iron garnet (YIG) sphere positioned at the node of a microwave resonator (central frequency: 2.92 GHz), with pump signals injected through a microwave patch antenna. By dynamically tuning the frequency, power, and number of pump signals, the precise control over the number of nonreciprocal isolation channels and their spectral positions is realized. Notably, the continuous tuning of the nonreciprocal bandwidth is achieved by increasing the number of pump signals from 2 to 5, expanding the isolation bandwidth from 6 MHz to 14 MHz. Furthermore, by tailoring the spectral distribution of pump signals, the system realizes flexible switching between bandpass and band-stop isolation states. Importantly, this method eliminates the need of static magnetic field adjustments or structural reconfiguration, relying solely on coherent microwave-photon interactions to modulate PIM-BIC coupling. Experimental results highlight two key physical outcomes: 1) Extending conventional single-mode magnonic nonreciprocal transmission to multi-channel and broadband-tunable regimes; 2) achieving microwave nonreciprocal control without the need of static magnetic field adjustments or structural reconfiguration. These advances establish a robust platform for designing reconfigurable multi-channel isolators and circulators, which can be directly applied to microwave communication systems, quantum information processing, and radar technologies.
  • 图 1  (a) 具有非互易特性的腔磁子系统实验装置图, 直径1 mm的YIG小球放置在微波谐振腔上, 通过VNA在1, 2端口测量其透射谱, 在3端口经由微波贴片天线送入泵浦信号; (b) 测量了系统在BIC条件下的|S21|和|S12|透射谱; (c) 在BIC频率(2.573 GHz)处输入一个功率为20 dBm的泵浦信号, 泵浦信号激发的PIM与BIC发生强耦合, 形成两个混合模式

    Fig. 1.  (a) Schematic diagram of the experimental setup for the cavity magnonic system with nonreciprocal characteristics, a 1-mm-diameter YIG sphere is placed at the node of a microwave resonator, the transmission spectra are measured between ports 1 and 2 using a vector network analyzer (VNA), while pump signals are injected into port 3 through a microwave patch antenna; (b) transmission spectra |S21| and |S12| of the system are measured under the BIC condition; (c) a pump signal with a power of 20 dBm is injected at the BIC frequency, exciting PIMs that strongly couple with the BIC, resulting in the formation of two hybrid modes.

    图 2  (a), (c), (e), (g)分别为输入的泵浦调制信号在时域上的波形(其主要频率分量, 在频域上20 MHz的带宽内输入2—5个均分带宽的泵浦信号, 在右侧列中用透明条带表示); (b), (d), (f), (h)展示了系统可以调制的不同通道数, 当输入相应的泵浦调制信号时, 在VNA上测量的|S21|和|S12|透射谱

    Fig. 2.  (a), (c), (e), (g) depict the time-domain waveforms of the input modulated pump signals, the main frequency components of these signals are distributed within a 20 MHz bandwidth in the frequency domain, with 2 to 5 evenly spaced pump signals injected, as indicated by the transparent bands on the right; (b), (d), (f), (h) illustrate the number of modulation channels achievable by the system. These results are obtained from the transmission spectra |S21| and |S12| measured on the VNA when the corresponding modulated pump signals are applied.

    图 3  (a)—(d) 不同泵浦调制信号下的非互易隔离带, 横轴表示调制的非互易带的隔离区域, 纵轴是器件对微波信号的非互易隔离度; (e) 隔离带宽的大小随输入泵浦信号的数目连续变化, 横轴是输入泵浦信号的数目, 纵轴是非互易隔离带的隔离带宽

    Fig. 3.  (a)–(d) The nonreciprocal isolation bands under different modulated pump signals, the horizontal axis represents the isolation regions of the modulated nonreciprocal bands, while the vertical axis corresponds to the nonreciprocal isolation degree of the device for microwave signals; (e) the variation in isolation bandwidth as a function of the number of input pump signals, the horizontal axis indicates the number of input pump signals, and the vertical axis represents the isolation bandwidth of the nonreciprocal isolation bands.

    图 4  (a), (b) 测量的带通隔离器的输入泵浦信号的时域和频域图像; (c), (d) 测量的带阻隔离器的输入泵浦信号的时域和频域图像; (e)红色非互易带区域为带通区域, 灰色部分为带阻区域

    Fig. 4.  (a), (b) The time-domain and frequency-domain representations of the input pump signals for the band-pass isolator; (c), (d) the time-domain and frequency-domain representations of the input pump signals for the band-stop isolator; (e) the red nonreciprocal band corresponds to the band-pass region, while the gray area represents the band-stop region.

  • [1]

    Yu Z F, Fan S H 2009 Nat. Photonics 3 91Google Scholar

    [2]

    Lira H, Yu Z F, Fan S H, Lipson M 2012 Phys. Rev. Lett. 109 033901Google Scholar

    [3]

    Fang K, Yu Z F, Fan S H 2012 Phys. Rev. Lett. 108 153901Google Scholar

    [4]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774Google Scholar

    [5]

    Kang M S, Butsch A, Russell P St J 2011 Nat. Photonics 5 549Google Scholar

    [6]

    Manipatruni S, Robinson J T, Lipson M 2009 Phys. Rev. Lett. 102 213903Google Scholar

    [7]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [8]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [9]

    Jalas D, Petrov A, Eich M, Freude W, Fan S H, Yu Z F, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem J D, Vanwolleghem M, Doerr C R, Renner D H 2013 Nat. Photonics 7 579Google Scholar

    [10]

    Reiskarimian N, Krishnaswamy H 2016 Nat. Commun. 7 11217Google Scholar

    [11]

    Kord A, Sounas D L, Alù A 2017 IEEE Trans. Microw. Theory Tech. 66 911

    [12]

    Abdo B, Sliwa K, Frunzio L, Devoret M 2013 Phys. Rev. X 3 031001

    [13]

    Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel J D, Aumentado J 2017 Phys. Rev. Appl. 7 024028Google Scholar

    [14]

    Chapman B J, Rosenthal E I, Kerckhoff J, Moores B A, Vale L R, Mates J A B, Hilton G C, Lalumière K, Blais A, Lehnert K W 2017 Phys. Rev. X 7 041043

    [15]

    Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J, Devoret M H 2015 Phys. Rev. X 5 041020

    [16]

    Ranzani L, Aumentado J 2015 New J. Phys. 17 023024Google Scholar

    [17]

    Kodera T, Sounas D L, Caloz C 2011 Appl. Phys. Lett. 99 031901Google Scholar

    [18]

    Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K, Deck-Léger Z-L 2018 Phys. Rev. Appl. 10 047001Google Scholar

    [19]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar

    [20]

    Zhao Y T, Rao J W, Gui Y S, Wang Y P, Hu C M 2020 Phys. Rev. Appl. 14 014035Google Scholar

    [21]

    Qian J, Rao J W, Gui Y S, Wang Y P, An Z H, Hu C M 2020 Appl. Phys. Lett. 116 031901Google Scholar

    [22]

    Rao J W, Yao B, Wang C Y, Zhang C, Yu T, Lu W 2023 Phys. Rev. Lett. 130 046705Google Scholar

    [23]

    Chen Z, Rao J, Zhao K X, Yang F, Wang C X, Yao B, Lu W 2024 Appl. Phys. Lett. 125 031901Google Scholar

  • [1] 徐明慧, 刘晓敏, 史佳佳, 张冲, 张静, 杨荣国, 郜江瑞. 微波-声子与光-磁纠缠态的产生. 物理学报, doi: 10.7498/aps.74.20241664
    [2] 尹凡, 戴昌杰, 张影, 于海林, 肖杨. 微波谐振腔中磁双层的零阻尼效应. 物理学报, doi: 10.7498/aps.74.20241730
    [3] 杨栋超, 易立志, 丁林杰, 刘敏, 朱丽娅, 许云丽, 何雄, 沈顺清, 潘礼庆, JohnQ. Xiao. 铁磁绝缘体中磁振子的非平衡稳态输运性质. 物理学报, doi: 10.7498/aps.73.20240498
    [4] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, doi: 10.7498/aps.73.20240861
    [5] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, doi: 10.7498/aps.73.20231556
    [6] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, doi: 10.7498/aps.73.20231589
    [7] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, doi: 10.7498/aps.73.20240834
    [8] 闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕. 基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究. 物理学报, doi: 10.7498/aps.72.20221894
    [9] 姚能智, 王浩, 王斌, 王学生. 基于变换流体动力学的文丘里效应旋聚器的设计与非互易特性研究. 物理学报, doi: 10.7498/aps.71.20212361
    [10] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模. 物理学报, doi: 10.7498/aps.70.20201673
    [11] 杜芊, 陈溢杭. 硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应. 物理学报, doi: 10.7498/aps.70.20210332
    [12] 李航天, 王智, 王慧莹, 崔粲, 李智勇. 磁光平面波导的单向传播特性. 物理学报, doi: 10.7498/aps.69.20191795
    [13] 王慧莹, 王智, 崔粲, 李航天, 李强, 詹翔空, 王健, 吴重庆. 非互易旋电材料硅基矩形波导的色散特性研究. 物理学报, doi: 10.7498/aps.68.20190109
    [14] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究. 物理学报, doi: 10.7498/aps.63.227802
    [15] 张民仓, 王振邦. 一类环状非球谐振子势场中相对论粒子的束缚态解. 物理学报, doi: 10.7498/aps.56.3688
    [16] 陆法林, 陈昌远. 环形非球谐振子势Klein-Gordon方程的束缚态. 物理学报, doi: 10.7498/aps.53.1652
    [17] 祁永昌. ZZd?137的荷电费密子-狄喇克双子束缚态的能谱结构. 物理学报, doi: 10.7498/aps.42.544
    [18] 张鉴祖, 祁永昌. 荷电费密子和阿贝耳双子的束缚态波函数及其应用. 物理学报, doi: 10.7498/aps.39.699
    [19] 章世伟, 苏汝铿. Kerr度规中的Bose子束缚态. 物理学报, doi: 10.7498/aps.31.311
    [20] 于渌. 含顺磁杂质超导体中的束缚态. 物理学报, doi: 10.7498/aps.21.75
计量
  • 文章访问数:  225
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-01
  • 修回日期:  2025-02-11
  • 上网日期:  2025-02-21

/

返回文章
返回