搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应

杜芊 陈溢杭

引用本文:
Citation:

硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应

杜芊, 陈溢杭

Enhancing third-harmonic generation by quasi bound states in continuum in silicon nanoparticle arrays

Du Qian, Chen Yi-Hang
PDF
HTML
导出引用
  • 由高折射率介质材料制备的亚波长人工结构, 通过电磁谐振效应为在纳米尺度操控光提供了一种有效方法. 这类结构的吸收损耗通常较低, 然而辐射损耗降低了其非线性响应的效率. 通过连续域束缚态(bound states in the continuum, BICs)可望解决这个问题. BICs是一种处于连续域内而保持局域的非常规光学态, 存在于光锥线以内并且具有无限大的Q值. 本文提出通过破坏硅纳米颗粒阵列原胞的对称性将BIC转变成准BIC, 使得结构的透射谱中出现高Q的窄共振谷, 当调节泵浦波长至共振波长时, 非线性响应显著增强, 三次谐波激发的强度提高了6个数量级, 转化效率可提升至约2.6 × 10–6, 该结果有望应用于硅基光学非线性器件的设计.
    Subwavelength artificial structures of high refractive index dielectrics provide an effective way to control and manipulate light on a nanoscale by enhancing electric and magnetic fields. This kind of structure usually has low absorption loss, but its performance is also limited by radiation loss, which will reduce the efficiency of its nonlinear response. This problem can be solved by using bound states in the continuum (BICs). The BICs are a kind of unconventional state which is in continuous domain but remains localized. They exist within a light cone and have an infinite quality factor. By combining BICs with nonlinear optics, high-Q resonances from quasi-BICs are used to excite and enhance the nonlinear response. The simulation shows that when the symmetry of the unit cell of the silicon nanoparticle arrays is broken, the BIC become the quasi-BIC, and the transmission spectrum will produce a high-Q narrow resonance valley. The resonance has polarization dependence of electric field. With the change of pump wavelength, the third-harmonic generation (THG) intensity first increases and then decreases gradually. The pump wavelength changed by several nanometers can change THG intensity by at least one order of magnitude. When the pump wavelength is adjusted to the resonance wavelength, the nonlinearity is significantly enhanced as a result of the strong field localization. The THG intensity is highly sensitive to the variation of asymmetric parameters. Only a change of 75 nm will result in a decrease of THG intensity by at least one order of magnitude. There is a third-order relationship between pump power and THG power. For the proposed structure, the factors affecting the conversion efficiency of THG include pump power, pump wavelength, polarization angle of pump light, and asymmetry parameter. When the polarization direction of electric field is along the short axis of the structure and the pump light at resonance wavelength is vertically incident to the structure with an asymmetric parameter of 0.125, the conversion efficiency of THG can be increased to ~2.6 × 10–6 and the intensity of THG is increased by six orders of magnitude. The results are expected to be applied to designing the silicon-based optical nonlinear devices.
      通信作者: 陈溢杭, yhchen@scnu.edu.cn
    • 基金项目: 广东省自然科学基金(批准号: 2015A030311018, 2017A030313035)和广州市科技计划(批准号: 2019050001)资助的课题
      Corresponding author: Chen Yi-Hang, yhchen@scnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2015A030311018, 2017A030313035) and the Science and Technology Program of Guangzhou, China (Grant No. 2019050001)
    [1]

    Staude I, Pertsch T, Kivshar Y S 2019 ACS Photonics 6 802Google Scholar

    [2]

    Geffrin J M, García-Cámara B, Gómez-Medina R, Albella P, Froufe-Pérez L S, Eyraud C, Litman A, Vaillon R, González F, Nieto-Vesperinas M 2012 Nat. Commun. 3 1171Google Scholar

    [3]

    Kuznetsov A I, Miroshnichenko A M, Brongersma M L, Kivshar Y S, Lukyanchuk B 2016 Science 354 aag2472Google Scholar

    [4]

    Kruk S, Kivshar Y S 2017 ACS Photonics 4 2638Google Scholar

    [5]

    Rybin M V, Koshelev K L, Sadrieva Z F, Samusev K B, Bogdanov A A, Limonov M F, Kivshar Y S 2017 Phys. Rev. Lett. 119 243901Google Scholar

    [6]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B 2017 Nature 541 196Google Scholar

    [7]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljacic M 2016 Nat. Rev. Mater. 1 16048Google Scholar

    [8]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [9]

    Rybin M, Kivshar Y 2017 Nature 541 164Google Scholar

    [10]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [11]

    Boyd R, Fischer G L 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) p6237

    [12]

    Doeleman H M, Francesco M, Wouter D H, Andrea A, Femius K A 2018 Nat. Photonics 12 397Google Scholar

    [13]

    Shorokhov A S, Melik-Gaykazyan E V, Smirnova D A, Hopkins B, Chong K E, Choi D Y, Shcherbakov M R, Miroshnichenko A E, Neshev D N, Fedyanin A A 2016 Nano Lett. 16 4857Google Scholar

    [14]

    Rutckaia V, Heyroth F, Novikov A, Shaleev M, Petrov M I, Schilling J 2017 Nano Lett. 17 6886Google Scholar

    [15]

    Gao Y, Fan Y, Wang Y, Yang W, Song Q, Xiao S 2018 Nano Lett. 18 8054Google Scholar

    [16]

    Barclay P E, Srinivasan K, Painter O 2005 Opt. Express 13 801Google Scholar

    [17]

    Qin F, Liu Y, Meng Z M, Li Z Y 2010 J. Appl. Phys. 108 053108Google Scholar

    [18]

    Kim H, Yu M 2017 Opt. Lett. 42 1305Google Scholar

    [19]

    Li H, Stellinga D P, Qiu Y, Sun Q, Li J 2019 Opt. Express 27 30931Google Scholar

    [20]

    Yang Y, Wang W, Boulesbaa A, Kravchenko I I, Briggs D P, Puretzky A, Geohegan D, Valentine J 2015 Nano Lett. 15 7388Google Scholar

    [21]

    Chen S, Rahmani M, Li K F, Miroshnichenko A E, Shuang Z 2018 ACS Photonics 5 1671Google Scholar

    [22]

    Reineke B, Sain B, Zhao R, Carletti L, Liu B, Huang L, Angelis C D, Zentgraf T 2019 Nano Lett. 19 6585Google Scholar

    [23]

    Sakoda K 2005 Optical Properties of Photonic Crystals (Berlin: Springer) p44

    [24]

    Maier S A 2006 Opt. Express 14 1957Google Scholar

    [25]

    Koshelev K, Tang Y, Li K, Li K, Choi D Y, Li G, Kivshar Y 2019 ACS Photonics 6 1639Google Scholar

    [26]

    石顺祥, 陈国夫, 赵卫 2012 非线性光学 (西安: 西安电子科技大学出版社) 第194页

    Shi S X, Chen G F, Zhao W 2012 Nonlinear Optics (Xi’an: Xi’an University of Electronic Science and Technology Press) p194 (in Chinese)

  • 图 1  (a)硅纳米颗粒阵列示意图; (b)周期结构原胞的二维对称示意图; (c)正方晶格结构的第一布里渊区

    Fig. 1.  (a) Schematic diagram of silicon nanoparticle array; (b) two-dimensional symmetry operations for the structure; (c) the first Brillouin zone of the two-dimensional square lattice.

    图 2  (a)结构原胞示意图; (b) TM偏振的能带图; (c)对称保护型BIC在xy平面和yz平面的电场分布和磁场分布图, 黑色框为结构轮廓; (d)光垂直入射结构的透射谱

    Fig. 2.  (a) Schematic diagram of a primitive cell; (b) band diagram of TM polarization; (c) electric field and magnetic field distribution of the symmetry-protected BIC in xy plane and yz plane, and the black frame is the structure outline; (d) transmission spectrum of the structure with normal incidence of light.

    图 3  (a)打破结构对称性示意图; (b)准BIC的xy平面和yz平面的电场和磁场图, 黑色框为结构轮廓; (c)改变不对称性参数α透射光谱的变化; (d)不对称参数α为0.125时, 不同的入射光电场偏振方向条件下的透射谱

    Fig. 3.  (a) Schematic diagram of breaking structural symmetry; (b) electric and magnetic fields in xy plane and yz plane of the quasi BIC, and the black frame is the structure outline; (c) transmission spectra under different asymmetry parameters α; (d) transmission spectra under different electric field polarization directions of incident light with asymmetry parameter α = 0.125.

    图 4  Q值和不对称参数α的关系, 红线表示反二次拟合

    Fig. 4.  Relationship between Q factor and asymmetry parameter α, and the red line represents the inverse quadratic fitting.

    图 5  (a) THG强度与不对称参数α的关系; (b)透射反射谱与THG的关系; (c)泵浦波长与THG强度的关系; (d)泵浦功率与THG功率的关系; (e)电场偏振方向与THG强度的关系

    Fig. 5.  (a) Relationship between THG intensity and asymmetry parameters α; (b) relationship between transmission and reflectance spectra and THG; (c) relationship between pump wavelength and THG intensity; (d) relationship between pump power and THG power; (e) relationship between polarization direction of electric field and THG intensity.

    表 1  点群C4v和点群C2v的对称特征表

    Table 1.  Character of the C4v point group and C2v point group.

    C4vE2C4C22σv2σdC2vEC2σyσx
    A111111A1
    1
    1
    1
    1
    B11–111–1
    A2111–1–1 A2
    1
    1
    –1
    –1
    B21–11–11
    E
    2
    0
    –2
    0
    0
    B11–11–1
    B21–1–11
    下载: 导出CSV
  • [1]

    Staude I, Pertsch T, Kivshar Y S 2019 ACS Photonics 6 802Google Scholar

    [2]

    Geffrin J M, García-Cámara B, Gómez-Medina R, Albella P, Froufe-Pérez L S, Eyraud C, Litman A, Vaillon R, González F, Nieto-Vesperinas M 2012 Nat. Commun. 3 1171Google Scholar

    [3]

    Kuznetsov A I, Miroshnichenko A M, Brongersma M L, Kivshar Y S, Lukyanchuk B 2016 Science 354 aag2472Google Scholar

    [4]

    Kruk S, Kivshar Y S 2017 ACS Photonics 4 2638Google Scholar

    [5]

    Rybin M V, Koshelev K L, Sadrieva Z F, Samusev K B, Bogdanov A A, Limonov M F, Kivshar Y S 2017 Phys. Rev. Lett. 119 243901Google Scholar

    [6]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B 2017 Nature 541 196Google Scholar

    [7]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljacic M 2016 Nat. Rev. Mater. 1 16048Google Scholar

    [8]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [9]

    Rybin M, Kivshar Y 2017 Nature 541 164Google Scholar

    [10]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [11]

    Boyd R, Fischer G L 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) p6237

    [12]

    Doeleman H M, Francesco M, Wouter D H, Andrea A, Femius K A 2018 Nat. Photonics 12 397Google Scholar

    [13]

    Shorokhov A S, Melik-Gaykazyan E V, Smirnova D A, Hopkins B, Chong K E, Choi D Y, Shcherbakov M R, Miroshnichenko A E, Neshev D N, Fedyanin A A 2016 Nano Lett. 16 4857Google Scholar

    [14]

    Rutckaia V, Heyroth F, Novikov A, Shaleev M, Petrov M I, Schilling J 2017 Nano Lett. 17 6886Google Scholar

    [15]

    Gao Y, Fan Y, Wang Y, Yang W, Song Q, Xiao S 2018 Nano Lett. 18 8054Google Scholar

    [16]

    Barclay P E, Srinivasan K, Painter O 2005 Opt. Express 13 801Google Scholar

    [17]

    Qin F, Liu Y, Meng Z M, Li Z Y 2010 J. Appl. Phys. 108 053108Google Scholar

    [18]

    Kim H, Yu M 2017 Opt. Lett. 42 1305Google Scholar

    [19]

    Li H, Stellinga D P, Qiu Y, Sun Q, Li J 2019 Opt. Express 27 30931Google Scholar

    [20]

    Yang Y, Wang W, Boulesbaa A, Kravchenko I I, Briggs D P, Puretzky A, Geohegan D, Valentine J 2015 Nano Lett. 15 7388Google Scholar

    [21]

    Chen S, Rahmani M, Li K F, Miroshnichenko A E, Shuang Z 2018 ACS Photonics 5 1671Google Scholar

    [22]

    Reineke B, Sain B, Zhao R, Carletti L, Liu B, Huang L, Angelis C D, Zentgraf T 2019 Nano Lett. 19 6585Google Scholar

    [23]

    Sakoda K 2005 Optical Properties of Photonic Crystals (Berlin: Springer) p44

    [24]

    Maier S A 2006 Opt. Express 14 1957Google Scholar

    [25]

    Koshelev K, Tang Y, Li K, Li K, Choi D Y, Li G, Kivshar Y 2019 ACS Photonics 6 1639Google Scholar

    [26]

    石顺祥, 陈国夫, 赵卫 2012 非线性光学 (西安: 西安电子科技大学出版社) 第194页

    Shi S X, Chen G F, Zhao W 2012 Nonlinear Optics (Xi’an: Xi’an University of Electronic Science and Technology Press) p194 (in Chinese)

  • [1] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [3] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [4] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制. 物理学报, 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [5] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [6] 闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕. 基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究. 物理学报, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [7] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛. 硅超构表面上强烈增强的三次谐波. 物理学报, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [8] 黄光侨, 林机. 竞争非局域三次五次非线性介质中孤子的传输特性. 物理学报, 2017, 66(5): 054208. doi: 10.7498/aps.66.054208
    [9] 滕欢, 柴路, 王清月, 胡明列. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波. 物理学报, 2017, 66(4): 044205. doi: 10.7498/aps.66.044205
    [10] 刘作业, 史彦超, 胡碧涛. 空气中等离子光栅诱导探测光丝三次谐波辐射放大的实验研究. 物理学报, 2014, 63(18): 184206. doi: 10.7498/aps.63.184206
    [11] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [12] 童元伟, 毛宇, 庄松林. 光频段多频率域负折射率材料的数值研究. 物理学报, 2010, 59(8): 5553-5558. doi: 10.7498/aps.59.5553
    [13] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [14] 刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭. 渐变折射率光量子阱对束缚态能级的调整. 物理学报, 2007, 56(4): 2281-2285. doi: 10.7498/aps.56.2281
    [15] 李 昆, 徐妙华, 金 展, 刘运全, 王兆华, 令维军, 张 杰. 对超短脉冲强激光在大气通道中产生的三次谐波偏振特性及白光光谱调制特性的研究. 物理学报, 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [16] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [17] 郝作强, 张 杰, 张 喆, 奚婷婷, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道的三次谐波辐射研究. 物理学报, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [18] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响. 物理学报, 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [19] 龚尚庆, 徐至展, 潘少华. 简单三能级原子介质中由量子干涉引起的折射率增强. 物理学报, 1995, 44(7): 1051-1055. doi: 10.7498/aps.44.1051
    [20] 霍崇儒, C. C. WANG, J. L. BOMBACK, J. V. JAMES. 反射三次谐波产生与晶体对称性. 物理学报, 1987, 36(11): 1416-1426. doi: 10.7498/aps.36.1416
计量
  • 文章访问数:  6485
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-18
  • 修回日期:  2021-03-25
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回