-
受激布里渊散射在激光雷达海洋遥感领域具有广泛应用, 而水体参数变化对其阈值及增益等关键特征参数影响的研究还很缺乏. 本文利用分布式噪声模型及耦合波方程, 理论分析了水的温度、压强和衰减系数对受激布里渊散射阈值和增益系数的影响. 在理论分析基础上, 设计了一种温度压强可控实验系统, 采用平均衰减系数法实验测量了不同温度、压强及衰减系数下的阈值和增益系数. 结果表明, 受激布里渊散射阈值随压力和衰减系数的增大而增大, 随温度的升高而减小, 而增益系数则呈现与阈值相反的变化趋势. 温度和衰减系数对阈值和增益系数的影响大于压力. 研究结果对受激布里渊散射激光雷达海洋遥感探测具有重要意义.Stimulated Brillouin scattering (SBS) is a typical inelastic scattering effect generated by the interaction between intense incident laser and the acoustic wave field in medium and has always been an active research topic in nonlinear optics. The SBS can be used as a novel LIDAR technology for active optical remote sensing of temperature and sound speed structure in ocean. Although, the threshold value and gain property of SBS at normal temperature are studied, none of the threshold values and gain coefficients of SBS at different temperatures, pressures and attenuation coefficients has been investigated in detail. Further, neither the relation between threshold value and water pressure nor the relation between gain coefficient and water pressure is clear now, and little work has been reported. The theoretical and experimental studies of the influence of water parameters on the threshold value and gain coefficient of SBS are still scanty. In this paper, the effects of temperature, pressure and attenuation coefficient of water on threshold value and gain coefficient of SBS are studied theoretically and experimentally. Theoretically, the variations of threshold value and gain coefficient of SBS with temperature, pressure and attenuation coefficient are analyzed by the average attenuation coefficient method based on the distributed noise model (DNM) and coupled wave equations. The temporal waveforms of Stokes-, pump- and transmission-beam at different water parameters are obtained by using the DNM. Experimentally, a temperature-pressure controlled simulator is designed to obtain the threshold values and gain coefficients of SBS in water at different temperatures, pressures and attenuation coefficients through measuring the change of attenuation coefficient of laser pulses. The results indicate that (i) the threshold value of SBS increases with pressure increasing at the same temperature and decreases with temperature increasing at the same pressure; (ii) the threshold value is positively correlated with the attenuation coefficient at the same temperature and pressure; (iii) the gain coefficient of SBS increases with temperature increasing at the same pressure and decreases with pressure increasing at the same temperature. We also find that the temperature and attenuation coefficient have greater effect on threshold value and gain coefficient of SBS than the water pressure. The studied results are of great significance in realizing the ocean remote sensing by SBS lidar.
[1] Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Publishing) pp1−42
[2] Bloembergen N 1965 Nonlinear Optics (New York: Benjamin) pp12−20
[3] Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar
[4] Yuan H, Wang Y L, Lu Z W, Zheng Z X 2018 Opt. Lett. 43 511Google Scholar
[5] Choudhary A, Liu Y, Marpaung D, Eggleton B J 2018 IEEE J. Sel. Top. Quantum Electron. 24 7600211Google Scholar
[6] Jiang H, Yan L, Pan W, Luo B, Zou X 2018 Opt. Lett. 43 279Google Scholar
[7] Du C, Zhou W N, Wang Y, Wang M H, Wang D, Wang K J, Dong W, Zhang X D 2018 Opt. Lett. 43 4915Google Scholar
[8] Remer I, Shaashoua R, Shemesh N, Zvi A B, Bilenca A 2020 Nat. Methods 17 913Google Scholar
[9] Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C, Roscini L, Corte L, Cardinali G, Palombo F, Sandercock J R, Fioretto D 2017 Phys. Rev. X 7 031015Google Scholar
[10] Yuan D P, Xu J, Liu Z, Hao S G, Shi J L, Luo N N, Li S J, Liu J, Wan S P, He X D 2018 Opt. Commun. 427 27Google Scholar
[11] Liu D H, Xu J F, Li R S, Dai R, Gong W P 2002 Opt. Commun. 203 335Google Scholar
[12] Shi J L, Ouyang M, Gong W P, Li S, Liu D H 2008 Appl. Phys. B 90 569Google Scholar
[13] Shi J L, Tang Y J, Wei H J, Zhang Lei, Zhang D, Shi J W, Gong W P, He X D, Yang K C, Liu D H 2012 Appl. Phys. B 108 717Google Scholar
[14] Zel'dovich B Y, Pilipetsky N F, Shkunov V V 1985 Principles of Phase Conjugation (New York: Springer Verlag Berlin Heidelberg) pp25−64
[15] Boyd R W, Rzazewski K B 1990 Phys. Rev. A 42 5514Google Scholar
[16] Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205Google Scholar
[17] Nguen-Vo N M, Pfeifer S J 1993 IEEE J. Quantum Electron. 29 508Google Scholar
[18] 徐德 2008 硕士学位论文 (杭州: 浙江大学)
Xu D 2008 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)
[19] Park H, Lim C, Yoshida H, Nakatsuka M 2006 Jpn. J. Appl. Phys. 45 5073Google Scholar
[20] Först P, Werner F, Delgado A 2000 Rheol. Acta. 39 566Google Scholar
[21] Tanaka Y, Matsuda Y, Fujiwara H, Kubota H, Makita T 1987 Int. J. Thermophys. 8 147Google Scholar
[22] Grosso V A D 1974 J. Acoust. Soc. Am. 56 1084Google Scholar
[23] Hasi W L J, Guo X, LU H H, Fu M L, Gong S, Geng X Z, Lu Z W, Lin D Y, He W M 2009 Laser Part. Beams 27 733Google Scholar
[24] Afshaarvahid S, Devrelis V, Munch J 1998 Phys. Rev. A 57 3961Google Scholar
[25] Hagknlocker E, Minck R, Rado W 1967 Phys. Rev. A 154 226Google Scholar
[26] Shi J, Chen X, Ouyang M, Liu J, Liu D H 2009 Appl. Phys. B 95 657Google Scholar
[27] Bai J H, Liu J, Huang Y, Liu Y N, Sun L, Liu D H, Fry E S 2007 Appl. Opt. 46 6804Google Scholar
-
图 4 水中SBS阈值随水体参数的变化 (a) 25 ℃, 稳态阈值; (b) 25 ℃, 瞬态阈值; (c) 0 MPa, 稳态阈值; (d) 0 MPa, 瞬态阈值; (e) 0.25 m–1, 稳态阈值; (f) 0.25 m–1, 瞬态阈值
Fig. 4. Simulation values of steady- and transient-state threshold value of SBS at different water parameters: (a) 25 ℃, steady-state; (b) 25 ℃, transient-state; (c) 0 MPa, steady-state; (d) 0 MPa, transient-state; (e) 0.25 m–1, steady-state; (f) 0.25 m–1, transient-state.
图 7 不同水体参数下SBS阈值的实验测量与理论仿真结果对比 (a)相同衰减系数、不同温度; (b)相同温度、不同衰减系数; (c)相同压强和衰减系数、不同温度
Fig. 7. Comparison of experimental measurements with theoretical simulations of SBS threshold at different water parameters: (a) Different temperatures at the same attenuation coefficient; (b) different attenuation coefficients at the same temperature; (c) different temperatures at the same pressure and attenuation coefficient.
-
[1] Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Publishing) pp1−42
[2] Bloembergen N 1965 Nonlinear Optics (New York: Benjamin) pp12−20
[3] Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar
[4] Yuan H, Wang Y L, Lu Z W, Zheng Z X 2018 Opt. Lett. 43 511Google Scholar
[5] Choudhary A, Liu Y, Marpaung D, Eggleton B J 2018 IEEE J. Sel. Top. Quantum Electron. 24 7600211Google Scholar
[6] Jiang H, Yan L, Pan W, Luo B, Zou X 2018 Opt. Lett. 43 279Google Scholar
[7] Du C, Zhou W N, Wang Y, Wang M H, Wang D, Wang K J, Dong W, Zhang X D 2018 Opt. Lett. 43 4915Google Scholar
[8] Remer I, Shaashoua R, Shemesh N, Zvi A B, Bilenca A 2020 Nat. Methods 17 913Google Scholar
[9] Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C, Roscini L, Corte L, Cardinali G, Palombo F, Sandercock J R, Fioretto D 2017 Phys. Rev. X 7 031015Google Scholar
[10] Yuan D P, Xu J, Liu Z, Hao S G, Shi J L, Luo N N, Li S J, Liu J, Wan S P, He X D 2018 Opt. Commun. 427 27Google Scholar
[11] Liu D H, Xu J F, Li R S, Dai R, Gong W P 2002 Opt. Commun. 203 335Google Scholar
[12] Shi J L, Ouyang M, Gong W P, Li S, Liu D H 2008 Appl. Phys. B 90 569Google Scholar
[13] Shi J L, Tang Y J, Wei H J, Zhang Lei, Zhang D, Shi J W, Gong W P, He X D, Yang K C, Liu D H 2012 Appl. Phys. B 108 717Google Scholar
[14] Zel'dovich B Y, Pilipetsky N F, Shkunov V V 1985 Principles of Phase Conjugation (New York: Springer Verlag Berlin Heidelberg) pp25−64
[15] Boyd R W, Rzazewski K B 1990 Phys. Rev. A 42 5514Google Scholar
[16] Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205Google Scholar
[17] Nguen-Vo N M, Pfeifer S J 1993 IEEE J. Quantum Electron. 29 508Google Scholar
[18] 徐德 2008 硕士学位论文 (杭州: 浙江大学)
Xu D 2008 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)
[19] Park H, Lim C, Yoshida H, Nakatsuka M 2006 Jpn. J. Appl. Phys. 45 5073Google Scholar
[20] Först P, Werner F, Delgado A 2000 Rheol. Acta. 39 566Google Scholar
[21] Tanaka Y, Matsuda Y, Fujiwara H, Kubota H, Makita T 1987 Int. J. Thermophys. 8 147Google Scholar
[22] Grosso V A D 1974 J. Acoust. Soc. Am. 56 1084Google Scholar
[23] Hasi W L J, Guo X, LU H H, Fu M L, Gong S, Geng X Z, Lu Z W, Lin D Y, He W M 2009 Laser Part. Beams 27 733Google Scholar
[24] Afshaarvahid S, Devrelis V, Munch J 1998 Phys. Rev. A 57 3961Google Scholar
[25] Hagknlocker E, Minck R, Rado W 1967 Phys. Rev. A 154 226Google Scholar
[26] Shi J, Chen X, Ouyang M, Liu J, Liu D H 2009 Appl. Phys. B 95 657Google Scholar
[27] Bai J H, Liu J, Huang Y, Liu Y N, Sun L, Liu D H, Fry E S 2007 Appl. Opt. 46 6804Google Scholar
计量
- 文章访问数: 4948
- PDF下载量: 58
- 被引次数: 0