搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水体参数对受激布里渊散射阈值及增益的影响

许锦 郭洋宁 罗宁宁 李淑静 史久林 何兴道

引用本文:
Citation:

水体参数对受激布里渊散射阈值及增益的影响

许锦, 郭洋宁, 罗宁宁, 李淑静, 史久林, 何兴道

Influence of water parameters on threshold value and gain coefficient of stimulated Brillouin scattering

Xu Jin, Guo Yang-Ning, Luo Ning-Ning, Li Shu-Jing, Shi Jiu-Lin, He Xing-Dao
PDF
HTML
导出引用
  • 受激布里渊散射在激光雷达海洋遥感领域具有广泛应用, 而水体参数变化对其阈值及增益等关键特征参数影响的研究还很缺乏. 本文利用分布式噪声模型及耦合波方程, 理论分析了水的温度、压强和衰减系数对受激布里渊散射阈值和增益系数的影响. 在理论分析基础上, 设计了一种温度压强可控实验系统, 采用平均衰减系数法实验测量了不同温度、压强及衰减系数下的阈值和增益系数. 结果表明, 受激布里渊散射阈值随压力和衰减系数的增大而增大, 随温度的升高而减小, 而增益系数则呈现与阈值相反的变化趋势. 温度和衰减系数对阈值和增益系数的影响大于压力. 研究结果对受激布里渊散射激光雷达海洋遥感探测具有重要意义.
    Stimulated Brillouin scattering (SBS) is a typical inelastic scattering effect generated by the interaction between intense incident laser and the acoustic wave field in medium and has always been an active research topic in nonlinear optics. The SBS can be used as a novel LIDAR technology for active optical remote sensing of temperature and sound speed structure in ocean. Although, the threshold value and gain property of SBS at normal temperature are studied, none of the threshold values and gain coefficients of SBS at different temperatures, pressures and attenuation coefficients has been investigated in detail. Further, neither the relation between threshold value and water pressure nor the relation between gain coefficient and water pressure is clear now, and little work has been reported. The theoretical and experimental studies of the influence of water parameters on the threshold value and gain coefficient of SBS are still scanty. In this paper, the effects of temperature, pressure and attenuation coefficient of water on threshold value and gain coefficient of SBS are studied theoretically and experimentally. Theoretically, the variations of threshold value and gain coefficient of SBS with temperature, pressure and attenuation coefficient are analyzed by the average attenuation coefficient method based on the distributed noise model (DNM) and coupled wave equations. The temporal waveforms of Stokes-, pump- and transmission-beam at different water parameters are obtained by using the DNM. Experimentally, a temperature-pressure controlled simulator is designed to obtain the threshold values and gain coefficients of SBS in water at different temperatures, pressures and attenuation coefficients through measuring the change of attenuation coefficient of laser pulses. The results indicate that (i) the threshold value of SBS increases with pressure increasing at the same temperature and decreases with temperature increasing at the same pressure; (ii) the threshold value is positively correlated with the attenuation coefficient at the same temperature and pressure; (iii) the gain coefficient of SBS increases with temperature increasing at the same pressure and decreases with pressure increasing at the same temperature. We also find that the temperature and attenuation coefficient have greater effect on threshold value and gain coefficient of SBS than the water pressure. The studied results are of great significance in realizing the ocean remote sensing by SBS lidar.
      通信作者: 史久林, jiulinshi@126.com ; 何兴道, xingdaohe@126.com
    • 基金项目: 国家自然科学基金(批准号: 41776111, 61865013)、国家重点研发计划(批准号: 2018YFE0115700)和国防工业技术发展计划项目 (批准号: JCKY2019401D002)资助的课题
      Corresponding author: Shi Jiu-Lin, jiulinshi@126.com ; He Xing-Dao, xingdaohe@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41776111, 61865013), the National Key R&D Program of China (Grant No. 2018YFE0115700), and the Defense Industrial Technology Development Program of China (Grant No. JCKY2019401D002)
    [1]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Publishing) pp1−42

    [2]

    Bloembergen N 1965 Nonlinear Optics (New York: Benjamin) pp12−20

    [3]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar

    [4]

    Yuan H, Wang Y L, Lu Z W, Zheng Z X 2018 Opt. Lett. 43 511Google Scholar

    [5]

    Choudhary A, Liu Y, Marpaung D, Eggleton B J 2018 IEEE J. Sel. Top. Quantum Electron. 24 7600211Google Scholar

    [6]

    Jiang H, Yan L, Pan W, Luo B, Zou X 2018 Opt. Lett. 43 279Google Scholar

    [7]

    Du C, Zhou W N, Wang Y, Wang M H, Wang D, Wang K J, Dong W, Zhang X D 2018 Opt. Lett. 43 4915Google Scholar

    [8]

    Remer I, Shaashoua R, Shemesh N, Zvi A B, Bilenca A 2020 Nat. Methods 17 913Google Scholar

    [9]

    Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C, Roscini L, Corte L, Cardinali G, Palombo F, Sandercock J R, Fioretto D 2017 Phys. Rev. X 7 031015Google Scholar

    [10]

    Yuan D P, Xu J, Liu Z, Hao S G, Shi J L, Luo N N, Li S J, Liu J, Wan S P, He X D 2018 Opt. Commun. 427 27Google Scholar

    [11]

    Liu D H, Xu J F, Li R S, Dai R, Gong W P 2002 Opt. Commun. 203 335Google Scholar

    [12]

    Shi J L, Ouyang M, Gong W P, Li S, Liu D H 2008 Appl. Phys. B 90 569Google Scholar

    [13]

    Shi J L, Tang Y J, Wei H J, Zhang Lei, Zhang D, Shi J W, Gong W P, He X D, Yang K C, Liu D H 2012 Appl. Phys. B 108 717Google Scholar

    [14]

    Zel'dovich B Y, Pilipetsky N F, Shkunov V V 1985 Principles of Phase Conjugation (New York: Springer Verlag Berlin Heidelberg) pp25−64

    [15]

    Boyd R W, Rzazewski K B 1990 Phys. Rev. A 42 5514Google Scholar

    [16]

    Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205Google Scholar

    [17]

    Nguen-Vo N M, Pfeifer S J 1993 IEEE J. Quantum Electron. 29 508Google Scholar

    [18]

    徐德 2008 硕士学位论文 (杭州: 浙江大学)

    Xu D 2008 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Park H, Lim C, Yoshida H, Nakatsuka M 2006 Jpn. J. Appl. Phys. 45 5073Google Scholar

    [20]

    Först P, Werner F, Delgado A 2000 Rheol. Acta. 39 566Google Scholar

    [21]

    Tanaka Y, Matsuda Y, Fujiwara H, Kubota H, Makita T 1987 Int. J. Thermophys. 8 147Google Scholar

    [22]

    Grosso V A D 1974 J. Acoust. Soc. Am. 56 1084Google Scholar

    [23]

    Hasi W L J, Guo X, LU H H, Fu M L, Gong S, Geng X Z, Lu Z W, Lin D Y, He W M 2009 Laser Part. Beams 27 733Google Scholar

    [24]

    Afshaarvahid S, Devrelis V, Munch J 1998 Phys. Rev. A 57 3961Google Scholar

    [25]

    Hagknlocker E, Minck R, Rado W 1967 Phys. Rev. A 154 226Google Scholar

    [26]

    Shi J, Chen X, Ouyang M, Liu J, Liu D H 2009 Appl. Phys. B 95 657Google Scholar

    [27]

    Bai J H, Liu J, Huang Y, Liu Y N, Sun L, Liu D H, Fry E S 2007 Appl. Opt. 46 6804Google Scholar

  • 图 1  布里渊散射的产生过程

    Fig. 1.  Process of Brillouin scattering.

    图 2  激光器泵浦能量分别为60, 70, 80 mJ时, 泵浦光、Stokes光和透射光的波形

    Fig. 2.  Temporal waveforms of pump, Stokes and transmission laser beams at the pump energy of 60, 70, 80 mJ.

    图 3  不同温度、压强和衰减系数下泵浦光和Stokes光的波形

    Fig. 3.  Temporal waveforms of pump and Stokes laser beams at different temperatures, pressures and attenuation coefficients.

    图 4  水中SBS阈值随水体参数的变化 (a) 25 ℃, 稳态阈值; (b) 25 ℃, 瞬态阈值; (c) 0 MPa, 稳态阈值; (d) 0 MPa, 瞬态阈值; (e) 0.25 m–1, 稳态阈值; (f) 0.25 m–1, 瞬态阈值

    Fig. 4.  Simulation values of steady- and transient-state threshold value of SBS at different water parameters: (a) 25 ℃, steady-state; (b) 25 ℃, transient-state; (c) 0 MPa, steady-state; (d) 0 MPa, transient-state; (e) 0.25 m–1, steady-state; (f) 0.25 m–1, transient-state.

    图 5  泵浦光在水中的衰减系数 (a) 25 ℃, 2 MPa; (b) 25 ℃, 4 MPa

    Fig. 5.  Measured attenuation coefficient of pulsed laser beams in water: (a) 25 ℃, 2 MPa; (b) 25 ℃, 4 MPa.

    图 6  不同水体参数下SBS阈值的实验测量结果 (a) $\alpha =0.25\;{\mathrm{m}}^{-1}$; (b) T = 25 ℃

    Fig. 6.  Experimental measured values of threshold value of SBS in water at different water parameters: (a) $\alpha =0.25\;{\mathrm{m}}^{-1}$, (b) T = 25 ℃.

    图 7  不同水体参数下SBS阈值的实验测量与理论仿真结果对比 (a)相同衰减系数、不同温度; (b)相同温度、不同衰减系数; (c)相同压强和衰减系数、不同温度

    Fig. 7.  Comparison of experimental measurements with theoretical simulations of SBS threshold at different water parameters: (a) Different temperatures at the same attenuation coefficient; (b) different attenuation coefficients at the same temperature; (c) different temperatures at the same pressure and attenuation coefficient.

    图 8  不同温度及压强下SBS增益的理论仿真与实验测量结果 (a), (b)实验值; (c), (d)理论值

    Fig. 8.  Comparison of experimental measurements with theoretical simulations of gain coefficient in water at different temperatures and pressures: (a), (b) Experimental values; (c), (d) theoretical values.

  • [1]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Publishing) pp1−42

    [2]

    Bloembergen N 1965 Nonlinear Optics (New York: Benjamin) pp12−20

    [3]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar

    [4]

    Yuan H, Wang Y L, Lu Z W, Zheng Z X 2018 Opt. Lett. 43 511Google Scholar

    [5]

    Choudhary A, Liu Y, Marpaung D, Eggleton B J 2018 IEEE J. Sel. Top. Quantum Electron. 24 7600211Google Scholar

    [6]

    Jiang H, Yan L, Pan W, Luo B, Zou X 2018 Opt. Lett. 43 279Google Scholar

    [7]

    Du C, Zhou W N, Wang Y, Wang M H, Wang D, Wang K J, Dong W, Zhang X D 2018 Opt. Lett. 43 4915Google Scholar

    [8]

    Remer I, Shaashoua R, Shemesh N, Zvi A B, Bilenca A 2020 Nat. Methods 17 913Google Scholar

    [9]

    Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C, Roscini L, Corte L, Cardinali G, Palombo F, Sandercock J R, Fioretto D 2017 Phys. Rev. X 7 031015Google Scholar

    [10]

    Yuan D P, Xu J, Liu Z, Hao S G, Shi J L, Luo N N, Li S J, Liu J, Wan S P, He X D 2018 Opt. Commun. 427 27Google Scholar

    [11]

    Liu D H, Xu J F, Li R S, Dai R, Gong W P 2002 Opt. Commun. 203 335Google Scholar

    [12]

    Shi J L, Ouyang M, Gong W P, Li S, Liu D H 2008 Appl. Phys. B 90 569Google Scholar

    [13]

    Shi J L, Tang Y J, Wei H J, Zhang Lei, Zhang D, Shi J W, Gong W P, He X D, Yang K C, Liu D H 2012 Appl. Phys. B 108 717Google Scholar

    [14]

    Zel'dovich B Y, Pilipetsky N F, Shkunov V V 1985 Principles of Phase Conjugation (New York: Springer Verlag Berlin Heidelberg) pp25−64

    [15]

    Boyd R W, Rzazewski K B 1990 Phys. Rev. A 42 5514Google Scholar

    [16]

    Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205Google Scholar

    [17]

    Nguen-Vo N M, Pfeifer S J 1993 IEEE J. Quantum Electron. 29 508Google Scholar

    [18]

    徐德 2008 硕士学位论文 (杭州: 浙江大学)

    Xu D 2008 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Park H, Lim C, Yoshida H, Nakatsuka M 2006 Jpn. J. Appl. Phys. 45 5073Google Scholar

    [20]

    Först P, Werner F, Delgado A 2000 Rheol. Acta. 39 566Google Scholar

    [21]

    Tanaka Y, Matsuda Y, Fujiwara H, Kubota H, Makita T 1987 Int. J. Thermophys. 8 147Google Scholar

    [22]

    Grosso V A D 1974 J. Acoust. Soc. Am. 56 1084Google Scholar

    [23]

    Hasi W L J, Guo X, LU H H, Fu M L, Gong S, Geng X Z, Lu Z W, Lin D Y, He W M 2009 Laser Part. Beams 27 733Google Scholar

    [24]

    Afshaarvahid S, Devrelis V, Munch J 1998 Phys. Rev. A 57 3961Google Scholar

    [25]

    Hagknlocker E, Minck R, Rado W 1967 Phys. Rev. A 154 226Google Scholar

    [26]

    Shi J, Chen X, Ouyang M, Liu J, Liu D H 2009 Appl. Phys. B 95 657Google Scholar

    [27]

    Bai J H, Liu J, Huang Y, Liu Y N, Sun L, Liu D H, Fry E S 2007 Appl. Opt. 46 6804Google Scholar

  • [1] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] 史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制. 物理学报, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [3] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [4] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩. 物理学报, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [5] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟. 变温条件下受激布里渊散射增益系数的实验测量. 物理学报, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [6] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [7] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 选用混合介质优化介质和控制受激布里渊散射特性的研究. 物理学报, 2011, 60(3): 034208. doi: 10.7498/aps.60.034208
    [8] 耿西钊, 哈斯乌力吉, 郭翔宇, 李杏, 林殿阳, 何伟明, 范瑞清, 吕志伟. 利用受激布里渊散射能量反射率测量液体介质运动黏度方法的研究. 物理学报, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [9] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [10] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 受激布里渊散射介质——全氟聚醚的温度特性研究. 物理学报, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [11] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [12] 王雨雷, 吕志伟, 何伟明, 张 祎. 一种大能量受激布里渊散射相位共轭镜的研究. 物理学报, 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
    [13] 郭少锋, 林文雄, 陆启生, 陈 燧, 林宗志, 邓少永, 朱永祥. 熔融石英玻璃受激布里渊散射效应实验研究. 物理学报, 2007, 56(4): 2218-2222. doi: 10.7498/aps.56.2218
    [14] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [15] 哈斯乌力吉, 吕志伟, 李 强, 巴德欣, 张 祎, 何伟明. 受激布里渊散射介质光学击穿的研究. 物理学报, 2006, 55(10): 5252-5256. doi: 10.7498/aps.55.5252
    [16] 哈斯乌力吉, 吕志伟, 何伟明, 李 强, 巴德欣. 光学击穿对受激布里渊散射特性的影响. 物理学报, 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [17] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响. 物理学报, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [18] 林殿阳, 高洪岩, 王双义, 蒋萧村, 吕志伟. 多纵模受激布里渊散射阈值. 物理学报, 2005, 54(9): 4151-4156. doi: 10.7498/aps.54.4151
    [19] 郭少锋, 陆启生, 程湘爱, 周 萍, 邓少永, 银 燕. 反射光中Stokes成分对受激布里渊散射过程的影响. 物理学报, 2004, 53(6): 1831-1835. doi: 10.7498/aps.53.1831
    [20] 吕月兰, 吕志伟, 董永康. 受激布里渊散射介质CCl4中脉冲传输与功率限幅特性. 物理学报, 2004, 53(7): 2170-2174. doi: 10.7498/aps.53.2170
计量
  • 文章访问数:  4659
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-16
  • 修回日期:  2021-03-14
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回