-
与传统的光子晶体或超表面等微纳光学系统相比,基于连续域束缚态(Bound States in the Continuum,BIC)的光学体系通常具有更高的品质因子(Quality Factor,Q)与更窄的工作线宽,更高的Q值给高性能的光电元件提供了广阔的可能性,但是更窄的线宽往往给实际应用造成一定麻烦,因为加工过程中的制造误差无可避免地导致实际的光学元件与理想情况存在差异,表现为实际工作波长与理想工作波长不匹配。为了克服该问题,本文利用带十字结构孔的光子晶体产生的对称保护型准连续域束缚态(quasi-Bound States in the Continuum,q-BIC),探索液晶(Liquid Crystal,LC)对q-BIC的动态调谐效应,以补偿加工误差导致的工作波长偏移。相比于入射光倾斜角对q-BIC的调制效应,在移动相同的波长时,LC对系统的Q值影响更小,例如使用入射光倾斜角调制q-BIC中心波长移动5.32 nm时,Q值下降可达75.84%,而使用LC调制q-BIC中心波长移动5.63 nm时,Q值上升了14.27%,这证明LC对高Q因子、超窄带的q-BIC元件具有极大的应用潜力。最后讨论了LC在q-BIC体系中的工作机理,可为广泛q-BIC的相关研究提供参考。Optical systems based on Bound States in the Continuum (BIC) generally possess higher Quality Factors (Q) and narrower operational linewidths compared with traditional photonic crystals or metasurfaces. The higher Q values offer extensive possibilities for high-performance optoelectronic devices. However, the narrower linewidths often pose challenges in practical applications, as fabrication errors during production inevitably lead to discrepancies between real optical devices and their ideal designs, which resulting in mismatches between actual and ideal operating wavelengths. To address this issue, we explore the dynamic tuning effect of liquid crystal (LC) on quasi-Bound States in the Continuum (q-BIC), aiming to compensate for wavelength shifts caused by fabrication errors. A photonic crystal slab with cross-shaped holes serves as the platform for generating q-BIC. Compared to the modulation induced by the tilt angles of incident light on q-BIC, LC has a lesser impact on the system's Q factor when shifting the same operational wavelength. For instance, shift the central wavelength λ0 of q-BIC by 5.32 nm using a tilted incident angle results in a reduction of the Q factor by up to 75.84% (from 3809.05 to 920.28). Whereas shifting the central wavelength λ0by 5.63 nm through the tilt angle θ of LC leads to an increase of Q factor of 14.27% (from 3809.05 to 4352.65). This demonstrates the significant potential of LC dynamic tuning in high-Q and ultra-narrowband q-BIC devices. Finally, the mechanism of LC within the q-BIC system is discussed. The smaller impact of LC on the Q factor is attributed to its minimal disruption of the q-BIC system's symmetry. Although LC also affects system symmetry within the cross-shaped holes, after adjusting the asymmetry parameters of the system, the Q factor and the LC tuning process can be well matched. The results of our research provides valuable references for extensive research related to q-BIC.
-
Keywords:
- q-BIC /
- Photonic Crystal /
- LC /
- Dynamic Tuning
-
[1] Von Neumann J, Wigner E P 1929 Phys. Z. 30 467
[2] Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048
[3] Kang M, Liu T, Chan C T, Xiao M 2023 Nat. Rev. Phys. 5 659
[4] Diao J, Han B, Yin J, Li X, Hong Z 2019 IEEE PHOTONICS J 1 99
[5] Huo Y Y, Zhang Y Q, Liu X Y, Ning T Y, Ren Y Y 2025 OPT COMMUN 574 131255
[6] Franceschini P, Tognazzi A, Chernyak A M, Musorin A I, Cino A C, Fedyanin A A, Angelis C D 2024 Nanophotonics 13 1
[7] He W C, Wang Y S 2024 Opt. Express 32 39415
[8] Ovcharenko A I, Blanchard C, Hugonin J P, Sauvan C 2020 Phys. Rev. B 101 155303
[9] Krasikov S D, Bogdanov A A, Iorsh I V 2018 Phys. Rev. B 97 224309
[10] Liang Y, Koshelev K, Zhang F C, Lin H, Lin S R, Wu J Y, Jia B H, Kivshar Y 2020 Nano Lett. 20 6351
[11] Gorkunov M V, Antonov A A, Kivshar Y S 2020 Phys. Rev. Lett. 125 093903
[12] Romano S, Zito G, Yépez SN L, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V 2019 Opt. Express 27 18776
[13] Romano S, Zito G, Torino S, Calafiore G, Penzo E, Coppola G, Cabrini S, Rendina I, Mocella V 2018 Photon. Res. 6 726
[14] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196
[15] Ha S T, Domínguez R P, Kuznetsov A I 2022 Adv. Opt. Mater. 10 2200753
[16] Carletti L, Koshelev K, Angelis C D, Kivshar Y 2018 Phys. Rev. Lett. 121 033903
[17] Kang L, Wu Y, Ma X, Lan S, Werner D H 2021 Adv. Opt. Mater. 10 2101497.
[18] Kühne J, Wang J, Weber T, Kühner L, Maier S A, Tittl A 2021 Nanophotonics 10 4305
[19] Li S Q, Xu X, Veetil R M, Valuckas V, Domínguez R P, Kuznetsov A I 2019 science 364 1087
[20] Zheng Z, Komar A, Kamali K Z, Noble J, Whichello L, Miroshnichenko A E, Rahmani M, Neshev D N, Xu L 2021 J. Appl. Phys. 130 053105
[21] Cui T, Bai B F, Sun H B 2019 Adv. Funct. Mater. 29 1806692
[22] Badloe T, Lee J, Seong J, Rho J 2021 Adv. Photonics Res. 2 2000205
[23] Xu S T, Fan J, Xue Z, Sun T, Li G, Li J, Lu D, Cong L 2024 Photonics Res. 12 2207
[24] Yu B, Yang F, Zeng M, Meng X, Qian Z, Tai Y, Li T 2025 Adv. Funct. Mater. 35 2413098
[25] Jain A, Moitra P, Koschny T, Valentine J, Soukoulis C M 2015 Adv. Opt. Mater. 3 1431
[26] Dharmavarapu R, Izumi K, Katayama I, Ng S, Vongsvivut J, Tobin M, Kuchmizhak A, Nishijima Y, Bhattacharya S, Juodkazis S 2019 Nanophotonics 8 1263
[27] Azzam S I, Chaudhuri K, Lagutchev A, Jacob Z, Kim Y L, Shalaev V M, Boltasseva A, Kildishev A V 2021 Laser Photonics Rev. 15 2000411
[28] Zhang X, Zhao Z, Liu P, Ako RT, Sriram S, Zhao X, Liu H, Bu H 2024 Opt. Lett. 49 7016
[29] Komar A, Domínguez R P, Miroshnichenko A, Yu Y F, Kivshar Y S, Kuznetsov A I, Neshev D 2018 ACS Photonics 5 1742
计量
- 文章访问数: 17
- PDF下载量: 0
- 被引次数: 0