-
随着信息技术的快速发展, 可调谐垂直腔面发射激光器(VCSEL)逐渐成为密集波分复用通信技术(DWDM)中的重要光源. 通过利用液晶(LC)的双折射特性所实现的液晶可调谐VCSEL具有偏振稳定、可靠性高、连续波长调谐等优点. 本文设计了一种基于内腔亚波长光栅的液晶可调谐VCSEL结构, 并对液晶层和亚波长光栅对VCSEL波长调谐特性的影响进行了详细分析与研究. 结果表明, 可调谐VCSEL结构中液晶层厚度不仅影响波长调谐范围, 同时决定了VCSEL激光器调谐过程中模式跳变. 此外, 通过对亚波长光栅结构设计, 形成了有效的折射率减反层, 优化液晶层与半导体层界面折射率差, 进一步的提高波长调谐范围和调谐效率. 当中心波长为980 nm时, 调谐范围提升了42%, 达到41 nm, 波长调谐效率提升41%. 为实现高光束质量、连续稳定波长调谐的VCSEL激光器提供了一种新的设计方法.With the rapid development of information technology, a wavelength-tunable vertical cavity surface emitting laser (VCSEL) is urgently needed as an optical signal source in dense wavelength division multiplexing (DWDM). Liquid crystal tunable VCSEL realized by utilizing the birefringence characteristics of liquid crystal has the advantages of stable polarization, high reliability, continuous wavelength tuning. In this paper, a liquid crystal tunable VCSEL structure based on intracavity sub wavelength grating is designed, and the influence of liquid crystal layer and sub wavelength grating on the wavelength tuning characteristics of VCSEL are analyzed and studied in depth. The results show that the thickness of the liquid crystal layer in the tunable VCSEL structure not only affects the wavelength tuning range, but also determines the mode hopping in the tuning process. In addition, an effective refractive index antireflection layer is formed by designing the subwavelength grating structure, and the refractive index difference between the liquid crystal layer and the semiconductor layer is optimized to further improve the wavelength tuning range and tuning efficiency. When the center wavelength is 980 nm, the tuning range is increased by 42%, reaching 41 nm, and the wavelength tuning efficiency is increased by 41%. It provides a new method of designing the VCSEL laser with high beam quality and continuous wavelength tuning.
-
Keywords:
- vertical cavity surface emitting laser /
- liquid crystal /
- tunable
[1] Larsson A 2011 IEEE J. Sel. Top. Quant. 17 1552Google Scholar
[2] Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar
[3] Iga K, Kinoshita S, Koyama F 1987 Electron. Lett. 23 134Google Scholar
[4] 李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 050006Google Scholar
Li Y J, Zong N, Peng Q J 2018 Laser & Optoelectronics Progress 55 050006Google Scholar
[5] Chang-Hasnain C J, Yang W J 2012 Adv. Opt. Photon. 4 379Google Scholar
[6] Lackner M, Schwarzott M, Winter F, Kögel B, Jatta S, Halbritter H, Meissner P 2006 Opt. Lett. 31 3170Google Scholar
[7] Lewander M, Fried A, Weibring P, Richter D, Spuler S, Rippe L 2011 Appl. Phys. B 104 715Google Scholar
[8] John D D, Burgner C B, Potsaid B, Robertson M E, Lee B K, Choi W J, Cable A E, Fujimoto J G, Jayaraman V 2015 J. Lightwave Technol. 33 3461Google Scholar
[9] Nakahama M, Sano H, Nakata N, Matsutani A, Koyama F 2012 IEICE Electron. Expr. 9 416Google Scholar
[10] Jayaraman V, Cole G D, Robertson M, Uddin A, Cable A 2012 Electron. Lett. 48 867Google Scholar
[11] Huang M C Y, Cheng K B, Zhou Y, Pesala B, Chang-Hasnain C J, Pisano A P 2006 IEEE Photonic Tech. L. 18 1197Google Scholar
[12] Xie Y, Beeckman J, Panajotov K, Neyts K 2014 Opt. Lett. 39 6494Google Scholar
[13] 王强 2014 硕士学位论文 (北京: 北京工业大学)
Wang Q 2014 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)
[14] 李保志, 邹永刚, 王小龙, 裴丽娜, 石琳琳, 李鹏涛, 关宝璐 2018 发光学报 39 1621Google Scholar
Li B Z, Zou Y G, Wang X L, Pei L N, Shi L L, Li P T, Guan B L 2018 Chinese Journal of Luminescence 39 1621Google Scholar
[15] Levallois C, Verbrugge V, Dupont L, De Bougrenet de la Tocnaye J-L, Caillaud B, Le Corre A, Dehaese O, Folliot H, Loualiche S 2006 Appl. Opt. 45 8484Google Scholar
[16] Castany O, Dupont L, Shuaib A, Gauthier J P, Levallois C, Paranthoën C 2011 Appl. Phys. Lett. 98 161105Google Scholar
[17] Frasunkiewicz L, Czyszanowski T, Thienpont H, Panajotov K 2018 Opt. Commun. 427 271Google Scholar
[18] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐 2020 物理学报 69 064203Google Scholar
Wang Z P, Zhang F, Yang J W, Li P T, Guan B L 2020 Acta Phys. Sin. 69 064203Google Scholar
[19] 江孝伟 2016 硕士学位论文 (北京: 北京工业大学)
Jiang X W 2016 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)
[20] 夏慧敏 2013 硕士学位论文 (合肥: 安徽大学)
Xia H M 2013 M. S. Thesis (Hefei: Anhui University) (in Chinese)
[21] Kanamori Y, Roy E, Chen Y 2005 Microelectron Eng. 78 287
[22] 李鹏涛 2018 硕士学位论文 (北京: 北京工业大学)
Li P T 2018 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)
[23] Panajotov K, Thienpont H 2011 Opt. Express 19 16749Google Scholar
[24] 裴丽娜 2019 硕士学位论文 (长春: 长春理工大学)
Pei L N 2019 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)
[25] Debernardi P, Tibaldi A, Orta R 2019 IEEE J. Quantum Elect. 55 2400108Google Scholar
[26] Corzine S W, Geels R S, Scott J W, Yan R H, Coldren L A 1989 IEEE J. Quantum Elect. 25 1513Google Scholar
-
-
[1] Larsson A 2011 IEEE J. Sel. Top. Quant. 17 1552Google Scholar
[2] Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar
[3] Iga K, Kinoshita S, Koyama F 1987 Electron. Lett. 23 134Google Scholar
[4] 李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 050006Google Scholar
Li Y J, Zong N, Peng Q J 2018 Laser & Optoelectronics Progress 55 050006Google Scholar
[5] Chang-Hasnain C J, Yang W J 2012 Adv. Opt. Photon. 4 379Google Scholar
[6] Lackner M, Schwarzott M, Winter F, Kögel B, Jatta S, Halbritter H, Meissner P 2006 Opt. Lett. 31 3170Google Scholar
[7] Lewander M, Fried A, Weibring P, Richter D, Spuler S, Rippe L 2011 Appl. Phys. B 104 715Google Scholar
[8] John D D, Burgner C B, Potsaid B, Robertson M E, Lee B K, Choi W J, Cable A E, Fujimoto J G, Jayaraman V 2015 J. Lightwave Technol. 33 3461Google Scholar
[9] Nakahama M, Sano H, Nakata N, Matsutani A, Koyama F 2012 IEICE Electron. Expr. 9 416Google Scholar
[10] Jayaraman V, Cole G D, Robertson M, Uddin A, Cable A 2012 Electron. Lett. 48 867Google Scholar
[11] Huang M C Y, Cheng K B, Zhou Y, Pesala B, Chang-Hasnain C J, Pisano A P 2006 IEEE Photonic Tech. L. 18 1197Google Scholar
[12] Xie Y, Beeckman J, Panajotov K, Neyts K 2014 Opt. Lett. 39 6494Google Scholar
[13] 王强 2014 硕士学位论文 (北京: 北京工业大学)
Wang Q 2014 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)
[14] 李保志, 邹永刚, 王小龙, 裴丽娜, 石琳琳, 李鹏涛, 关宝璐 2018 发光学报 39 1621Google Scholar
Li B Z, Zou Y G, Wang X L, Pei L N, Shi L L, Li P T, Guan B L 2018 Chinese Journal of Luminescence 39 1621Google Scholar
[15] Levallois C, Verbrugge V, Dupont L, De Bougrenet de la Tocnaye J-L, Caillaud B, Le Corre A, Dehaese O, Folliot H, Loualiche S 2006 Appl. Opt. 45 8484Google Scholar
[16] Castany O, Dupont L, Shuaib A, Gauthier J P, Levallois C, Paranthoën C 2011 Appl. Phys. Lett. 98 161105Google Scholar
[17] Frasunkiewicz L, Czyszanowski T, Thienpont H, Panajotov K 2018 Opt. Commun. 427 271Google Scholar
[18] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐 2020 物理学报 69 064203Google Scholar
Wang Z P, Zhang F, Yang J W, Li P T, Guan B L 2020 Acta Phys. Sin. 69 064203Google Scholar
[19] 江孝伟 2016 硕士学位论文 (北京: 北京工业大学)
Jiang X W 2016 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)
[20] 夏慧敏 2013 硕士学位论文 (合肥: 安徽大学)
Xia H M 2013 M. S. Thesis (Hefei: Anhui University) (in Chinese)
[21] Kanamori Y, Roy E, Chen Y 2005 Microelectron Eng. 78 287
[22] 李鹏涛 2018 硕士学位论文 (北京: 北京工业大学)
Li P T 2018 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)
[23] Panajotov K, Thienpont H 2011 Opt. Express 19 16749Google Scholar
[24] 裴丽娜 2019 硕士学位论文 (长春: 长春理工大学)
Pei L N 2019 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)
[25] Debernardi P, Tibaldi A, Orta R 2019 IEEE J. Quantum Elect. 55 2400108Google Scholar
[26] Corzine S W, Geels R S, Scott J W, Yan R H, Coldren L A 1989 IEEE J. Quantum Elect. 25 1513Google Scholar
计量
- 文章访问数: 5608
- PDF下载量: 105
- 被引次数: 0