搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内腔亚波长光栅液晶可调谐垂直腔面发射激光器

王志鹏 关宝璐 张峰 杨嘉炜

引用本文:
Citation:

内腔亚波长光栅液晶可调谐垂直腔面发射激光器

王志鹏, 关宝璐, 张峰, 杨嘉炜

Liquid crystal tunable vertical cavity surface emission laser with inner cavity sub-wavelength grating

Wang Zhi-Peng, Guan Bao-Lu, Zhang Feng, Yang Jia-Wei
PDF
HTML
导出引用
  • 随着信息技术的快速发展, 可调谐垂直腔面发射激光器(VCSEL)逐渐成为密集波分复用通信技术(DWDM)中的重要光源. 通过利用液晶(LC)的双折射特性所实现的液晶可调谐VCSEL具有偏振稳定、可靠性高、连续波长调谐等优点. 本文设计了一种基于内腔亚波长光栅的液晶可调谐VCSEL结构, 并对液晶层和亚波长光栅对VCSEL波长调谐特性的影响进行了详细分析与研究. 结果表明, 可调谐VCSEL结构中液晶层厚度不仅影响波长调谐范围, 同时决定了VCSEL激光器调谐过程中模式跳变. 此外, 通过对亚波长光栅结构设计, 形成了有效的折射率减反层, 优化液晶层与半导体层界面折射率差, 进一步的提高波长调谐范围和调谐效率. 当中心波长为980 nm时, 调谐范围提升了42%, 达到41 nm, 波长调谐效率提升41%. 为实现高光束质量、连续稳定波长调谐的VCSEL激光器提供了一种新的设计方法.
    With the rapid development of information technology, a wavelength-tunable vertical cavity surface emitting laser (VCSEL) is urgently needed as an optical signal source in dense wavelength division multiplexing (DWDM). Liquid crystal tunable VCSEL realized by utilizing the birefringence characteristics of liquid crystal has the advantages of stable polarization, high reliability, continuous wavelength tuning. In this paper, a liquid crystal tunable VCSEL structure based on intracavity sub wavelength grating is designed, and the influence of liquid crystal layer and sub wavelength grating on the wavelength tuning characteristics of VCSEL are analyzed and studied in depth. The results show that the thickness of the liquid crystal layer in the tunable VCSEL structure not only affects the wavelength tuning range, but also determines the mode hopping in the tuning process. In addition, an effective refractive index antireflection layer is formed by designing the subwavelength grating structure, and the refractive index difference between the liquid crystal layer and the semiconductor layer is optimized to further improve the wavelength tuning range and tuning efficiency. When the center wavelength is 980 nm, the tuning range is increased by 42%, reaching 41 nm, and the wavelength tuning efficiency is increased by 41%. It provides a new method of designing the VCSEL laser with high beam quality and continuous wavelength tuning.
      通信作者: 关宝璐, gbl@bjut.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61575008, 61775007)、北京市自然科学基金(批准号: 4172011)和北京市教育委员会(批准号: 040000546319525, 040000546618006)资助的课题
      Corresponding author: Guan Bao-Lu, gbl@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575008, 61775007), the Natural Science Foundation of Beijing City, China (Grant No. 4172011), and the Beijing Municipal Commission of Education of China (Grant Nos. 040000546319525, 040000546618006).
    [1]

    Larsson A 2011 IEEE J. Sel. Top. Quant. 17 1552Google Scholar

    [2]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [3]

    Iga K, Kinoshita S, Koyama F 1987 Electron. Lett. 23 134Google Scholar

    [4]

    李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 050006Google Scholar

    Li Y J, Zong N, Peng Q J 2018 Laser & Optoelectronics Progress 55 050006Google Scholar

    [5]

    Chang-Hasnain C J, Yang W J 2012 Adv. Opt. Photon. 4 379Google Scholar

    [6]

    Lackner M, Schwarzott M, Winter F, Kögel B, Jatta S, Halbritter H, Meissner P 2006 Opt. Lett. 31 3170Google Scholar

    [7]

    Lewander M, Fried A, Weibring P, Richter D, Spuler S, Rippe L 2011 Appl. Phys. B 104 715Google Scholar

    [8]

    John D D, Burgner C B, Potsaid B, Robertson M E, Lee B K, Choi W J, Cable A E, Fujimoto J G, Jayaraman V 2015 J. Lightwave Technol. 33 3461Google Scholar

    [9]

    Nakahama M, Sano H, Nakata N, Matsutani A, Koyama F 2012 IEICE Electron. Expr. 9 416Google Scholar

    [10]

    Jayaraman V, Cole G D, Robertson M, Uddin A, Cable A 2012 Electron. Lett. 48 867Google Scholar

    [11]

    Huang M C Y, Cheng K B, Zhou Y, Pesala B, Chang-Hasnain C J, Pisano A P 2006 IEEE Photonic Tech. L. 18 1197Google Scholar

    [12]

    Xie Y, Beeckman J, Panajotov K, Neyts K 2014 Opt. Lett. 39 6494Google Scholar

    [13]

    王强 2014 硕士学位论文 (北京: 北京工业大学)

    Wang Q 2014 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [14]

    李保志, 邹永刚, 王小龙, 裴丽娜, 石琳琳, 李鹏涛, 关宝璐 2018 发光学报 39 1621Google Scholar

    Li B Z, Zou Y G, Wang X L, Pei L N, Shi L L, Li P T, Guan B L 2018 Chinese Journal of Luminescence 39 1621Google Scholar

    [15]

    Levallois C, Verbrugge V, Dupont L, De Bougrenet de la Tocnaye J-L, Caillaud B, Le Corre A, Dehaese O, Folliot H, Loualiche S 2006 Appl. Opt. 45 8484Google Scholar

    [16]

    Castany O, Dupont L, Shuaib A, Gauthier J P, Levallois C, Paranthoën C 2011 Appl. Phys. Lett. 98 161105Google Scholar

    [17]

    Frasunkiewicz L, Czyszanowski T, Thienpont H, Panajotov K 2018 Opt. Commun. 427 271Google Scholar

    [18]

    王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐 2020 物理学报 69 064203Google Scholar

    Wang Z P, Zhang F, Yang J W, Li P T, Guan B L 2020 Acta Phys. Sin. 69 064203Google Scholar

    [19]

    江孝伟 2016 硕士学位论文 (北京: 北京工业大学)

    Jiang X W 2016 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [20]

    夏慧敏 2013 硕士学位论文 (合肥: 安徽大学)

    Xia H M 2013 M. S. Thesis (Hefei: Anhui University) (in Chinese)

    [21]

    Kanamori Y, Roy E, Chen Y 2005 Microelectron Eng. 78 287

    [22]

    李鹏涛 2018 硕士学位论文 (北京: 北京工业大学)

    Li P T 2018 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [23]

    Panajotov K, Thienpont H 2011 Opt. Express 19 16749Google Scholar

    [24]

    裴丽娜 2019 硕士学位论文 (长春: 长春理工大学)

    Pei L N 2019 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)

    [25]

    Debernardi P, Tibaldi A, Orta R 2019 IEEE J. Quantum Elect. 55 2400108Google Scholar

    [26]

    Corzine S W, Geels R S, Scott J W, Yan R H, Coldren L A 1989 IEEE J. Quantum Elect. 25 1513Google Scholar

  • 图 1  具有亚波长光栅层的液晶波长可调谐VCSEL的结构示意图

    Fig. 1.  Structure of liquid crystal wavelength tunable VCSEL with sub-wavelength grating layer.

    图 2  液晶可调谐VCSEL光场能量分布 (a)无亚波长光栅的情况; (b)—(d)为亚波长光栅不同周期、占空比的情况

    Fig. 2.  Liquid crystal tunable VCSEL field energy distribution: (a) Without sub wavelength grating; (b)–(d) Sub wavelength gratings with different cycles and duty cycles.

    图 3  液晶分子倾角随调谐电压变化示意图

    Fig. 3.  Diagram of liquid crystal molecule inclination varying with tuning voltage.

    图 4  液晶电控双折射率与电压的变化关系

    Fig. 4.  Relationship between electronic controlled birefringence and voltage of liquid crystal.

    图 5  液晶层厚度和旋转角度与调谐波长之间的关系图

    Fig. 5.  The relationship between the thickness and rotation angle of the liquid crystal layer and the tuning wavelength.

    图 6  (a)具有亚波长光栅可调谐VCSEL调谐范围; (b)无亚波长光栅可调谐VCSEL调谐范围

    Fig. 6.  (a) Tunable VCSEL tuning range with sub wavelength grating; (b) tunable VCSEL tuning range without sub wavelength grating.

    图 7  液晶可调谐VCSEL引入亚波长光栅前后, 液晶分子角与限制因子和阈值增益的关系

    Fig. 7.  The relationship between liquid crystal molecular angle and confinement factor and threshold gain before and after introducing subwavelength grating in liquid crystal tunable VCSEL.

  • [1]

    Larsson A 2011 IEEE J. Sel. Top. Quant. 17 1552Google Scholar

    [2]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [3]

    Iga K, Kinoshita S, Koyama F 1987 Electron. Lett. 23 134Google Scholar

    [4]

    李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 050006Google Scholar

    Li Y J, Zong N, Peng Q J 2018 Laser & Optoelectronics Progress 55 050006Google Scholar

    [5]

    Chang-Hasnain C J, Yang W J 2012 Adv. Opt. Photon. 4 379Google Scholar

    [6]

    Lackner M, Schwarzott M, Winter F, Kögel B, Jatta S, Halbritter H, Meissner P 2006 Opt. Lett. 31 3170Google Scholar

    [7]

    Lewander M, Fried A, Weibring P, Richter D, Spuler S, Rippe L 2011 Appl. Phys. B 104 715Google Scholar

    [8]

    John D D, Burgner C B, Potsaid B, Robertson M E, Lee B K, Choi W J, Cable A E, Fujimoto J G, Jayaraman V 2015 J. Lightwave Technol. 33 3461Google Scholar

    [9]

    Nakahama M, Sano H, Nakata N, Matsutani A, Koyama F 2012 IEICE Electron. Expr. 9 416Google Scholar

    [10]

    Jayaraman V, Cole G D, Robertson M, Uddin A, Cable A 2012 Electron. Lett. 48 867Google Scholar

    [11]

    Huang M C Y, Cheng K B, Zhou Y, Pesala B, Chang-Hasnain C J, Pisano A P 2006 IEEE Photonic Tech. L. 18 1197Google Scholar

    [12]

    Xie Y, Beeckman J, Panajotov K, Neyts K 2014 Opt. Lett. 39 6494Google Scholar

    [13]

    王强 2014 硕士学位论文 (北京: 北京工业大学)

    Wang Q 2014 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [14]

    李保志, 邹永刚, 王小龙, 裴丽娜, 石琳琳, 李鹏涛, 关宝璐 2018 发光学报 39 1621Google Scholar

    Li B Z, Zou Y G, Wang X L, Pei L N, Shi L L, Li P T, Guan B L 2018 Chinese Journal of Luminescence 39 1621Google Scholar

    [15]

    Levallois C, Verbrugge V, Dupont L, De Bougrenet de la Tocnaye J-L, Caillaud B, Le Corre A, Dehaese O, Folliot H, Loualiche S 2006 Appl. Opt. 45 8484Google Scholar

    [16]

    Castany O, Dupont L, Shuaib A, Gauthier J P, Levallois C, Paranthoën C 2011 Appl. Phys. Lett. 98 161105Google Scholar

    [17]

    Frasunkiewicz L, Czyszanowski T, Thienpont H, Panajotov K 2018 Opt. Commun. 427 271Google Scholar

    [18]

    王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐 2020 物理学报 69 064203Google Scholar

    Wang Z P, Zhang F, Yang J W, Li P T, Guan B L 2020 Acta Phys. Sin. 69 064203Google Scholar

    [19]

    江孝伟 2016 硕士学位论文 (北京: 北京工业大学)

    Jiang X W 2016 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [20]

    夏慧敏 2013 硕士学位论文 (合肥: 安徽大学)

    Xia H M 2013 M. S. Thesis (Hefei: Anhui University) (in Chinese)

    [21]

    Kanamori Y, Roy E, Chen Y 2005 Microelectron Eng. 78 287

    [22]

    李鹏涛 2018 硕士学位论文 (北京: 北京工业大学)

    Li P T 2018 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [23]

    Panajotov K, Thienpont H 2011 Opt. Express 19 16749Google Scholar

    [24]

    裴丽娜 2019 硕士学位论文 (长春: 长春理工大学)

    Pei L N 2019 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)

    [25]

    Debernardi P, Tibaldi A, Orta R 2019 IEEE J. Quantum Elect. 55 2400108Google Scholar

    [26]

    Corzine S W, Geels R S, Scott J W, Yan R H, Coldren L A 1989 IEEE J. Quantum Elect. 25 1513Google Scholar

  • [1] 王涛, 彭雪芳, 贺亮, 沈小雨, 朱仁江, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 509 nm高功率宽调谐外腔面发射激光器. 物理学报, 2024, 73(12): 124204. doi: 10.7498/aps.73.20240499
    [2] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 物理学报, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [3] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [4] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [5] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [6] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于扭曲向列液晶空间光调制器的矢量光生成. 物理学报, 2015, 64(11): 114204. doi: 10.7498/aps.64.114204
    [7] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器. 物理学报, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [8] 周建伟, 梁静秋, 梁中翥, 田超, 秦余欣, 王维彪. 光控液晶光子晶体微腔全光开关. 物理学报, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [9] 王强, 关宝璐, 刘克, 史国柱, 刘欣, 崔碧峰, 韩军, 李建军, 徐晨. 表面液晶-垂直腔面发射激光器温度特性的研究. 物理学报, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [10] 王豆豆, 王丽莉, 李冬冬. 热可调液晶填充微结构聚合物光纤设计及特性分析. 物理学报, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [11] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [12] 关宝璐, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 郭霞, 沈光地. 具有宽调谐范围的微纳光机电系统可调谐垂直腔面发射激光器研究. 物理学报, 2011, 60(3): 034206. doi: 10.7498/aps.60.034206
    [13] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [14] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备. 物理学报, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [16] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, 2008, 57(1): 194-199. doi: 10.7498/aps.57.194
    [17] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [18] 于涛, 彭增辉, 阮圣平, 宣丽. 单体光交联制备液晶垂直取向膜. 物理学报, 2004, 53(1): 316-319. doi: 10.7498/aps.53.316
    [19] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [20] 董新永, 赵春柳, 关柏鸥, 谭华耀, 袁树忠, 开桂云, 董孝义. 可调谐光纤环形腔激光器输出特性的理论与实验研究. 物理学报, 2002, 51(12): 2750-2755. doi: 10.7498/aps.51.2750
计量
  • 文章访问数:  5608
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-06-08
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回