搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器

孟祥昊 刘华刚 黄见洪 戴殊韬 邓晶 阮开明 陈金明 林文雄

引用本文:
Citation:

Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器

孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄

Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal

Meng Xiang-Hao, Liu Hua-Gang, Huang Jian-Hong, Dai Shu-Tao, Deng Jing, Ruan Kai-Ming, Chen Jin-Ming, Lin Wen-Xiong
PDF
导出引用
  • 介绍了一种基于新型非线性晶体Ba1-xB2-y-zO4SixAlyGaz 的可调谐深紫外飞秒激光光源. 从理论上分析了基频光和倍频光在通过非线性晶体时所造成的空间走离和群速度失配, 为了补偿空间走离以及波长调谐过程中晶体折射造成的光束偏离现象, 将两块相同的倍频晶体成镜像放置来产生二次谐波. 并调节延迟线的长度来补偿基频光和倍频光之间的群速度失配, 从而提高和频转换效率. 然后通过和频方式进行三倍频和四倍频来突破晶体相位匹配条件的限制, 产生了波长低于200 nm的深紫外飞秒激光. 利用钛宝石激光器提供基频光光源, 最终在250–300 nm, 192.5–210 nm 范围内获得了高重频、可调谐超短脉冲紫外和深紫外激光. 并在基频光波长为800 nm时, 得到的二倍频、三倍频和四倍频的功率分别为1.28 W, 194 mW和5.8 mW, 相对于前一级的转换效率依次为46.14%, 15.16%和3%. 采用互相关法测量得到266.7 nm紫外激光的脉冲宽度约为640.4 fs.
    Tunable coherent deep ultraviolet (DUV) light sources, especially ultrashort pulse DUV lasers have great applications in the fields of time-resolved, material processing, spectroscopy, laser spectroscopy and laser fusion. In the UV region, the best choice of generating the laser pulses in the femtosecond or picosecond regime is the frequency up-conversation technique based on second order nonlinearities. Over the past three decades, quite a lot of nonlinear crystals, such as LiB3O5, βup-BaB2O4, KBe2BO3F2 and Ba1-xB2-y- zO4SixAlyGaz have been developed and employed for generating the femtosecond pulses in the blue, ultraviolet, and even the deep-ultraviolet region. A tunable deep ultraviolet femtosecond laser is experimentally studied based on the new nonlinear crystal Ba1-xB2-y-zO4SixAlyGaz It is a kind of low-temperature phase barium metaborate single crystal belonging to a trigonal system, doped with one or more elements selected from Si, Al and Ga. As an optimized β-BaB2O4 crystal, Ba1-xB2-y-zO4SixAlyGaz completely overcomes the shortcomings of deliquescence compared with β-BaB2O4, and its nonlinear efficiency and optical damage threshold have also been greatly improved. Using two crystals as second harmonic generation is to compensate for the spatial walk-off effect and the light path walk-off due to refraction effect The optical axis of the second Ba1-xB2-y-zO4SixAlyGaz is twice the phase matching angle with respect to the first one. In a femtosecond regime, short pulse provides high efficient frequency conversation due to their high peak powers, but the group velocity mismatch is a cognitive factor to limit conversion efficiency. It is obvious that after the frequency doubling, the second harmonic pulse and fundamental pulse separate from each other. The second harmonic pulse lags behind the fundamental pulse as they propagate through the crystal and the second harmonic pulse is broadened into a longer pulse duration than the fundamental pulse The method to compensate for the group velocity mismatch is to adjust the path length between the fundamental and second harmonic pulse by means of time delay line. It consists of beam splitters and mirrors. Tunable deep ultraviolet pulse within a wavelength range from 192.5 to 210 nm is produced, with a maximum average power of 5.8 mW, under a 2.78 W fundamental power. The average power of second harmonic, third harmonic and fourth harmonic are 1.28 W, 194 mW and 5.8 mW at the fundamental wavelength of 800 nm, corresponding to conversion efficiencies of 46.14%, 15.16% and 3% from the previous stage, respectively. The duration of the third harmonic pulse is 640.4 fs at 266.7 nm as measured by the cross-correlation technique.
    • 基金项目: 国家自然科学基金重大科研仪器设备研制专项(批准号: 11327804)、中国科学院科研装备研制项目(批准号: yz201341)、福建省科技计划工业科技重点项目(批准号: 2012H0050)、国家自然科学基金青年科学基金(批准号: 61205134)和中国科学院海西研究院"春苗"青年人才专项(批准号: CMZX-2014-002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11327804), the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. yz201341), the Key Program of Industrial Science and Technology Plan of Fujian Province, China (Grant No. 2012H0050), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205134), and the Chunmiao Project of Haixi Institute of Chinese Academy of Sciences (Grant No. CMZX-2014-002).
    [1]

    Chen C T, Lin Z S 2004 J. Synth. Crys. 33 455 (in Chinese) [陈创天, 林哲帅 2004 人工晶体学报 33 455]

    [2]

    Chen C T, Liu L J 2007 J. Chin. Ceram. Soc. 35 1 (in Chinese) [陈创天, 刘丽娟 2007 硅酸盐学报 35 1]

    [3]

    Gao Z Y, Zhu J F, Tian W L, Wang J L, Wang Q, Zhang Z G, Wei Z Y, Yu H H, Zhang H J, Wang J Y 2014 Chin. Phys. B 23 054207

    [4]

    He J L, Lu X Q, Jia Y L 2000 Acta Phys. Sin. 49 2106 (in Chinese) [何京良, 卢兴强, 贾玉磊 2000 物理学报 49 2106]

    [5]

    Dubietis A, Tamošauskas G, Varanavičius A 2000 Opt. Lett. 25 1116

    [6]

    Liu H, Gong M L 2009 Acta Phys. Sin. 58 5443 (in Chinese) [刘欢, 巩马理 2009 物理学报 58 5443]

    [7]

    Nebel A, Beigang R 1991 Opt. Lett. 16 1729

    [8]

    Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 3979 (in Chinese) [刘华刚, 胡明列, 刘博文, 宋有建, 柴璐, 王清月 2010 物理学报 59 3979]

    [9]

    Wang G, Wang X, Zhou Y, Li C, Zhu Y, Xu Z, Chen C 2008 Appl. Opt. 47 486

    [10]

    Chen C, Togashi T, Suganuma T, Sekikawa T, Watanabe S, Xu Z, Wang J 2002 Opt. Lett. 27 637

    [11]

    Chen C, Xu Z, Deng D, Zhang J, Wong G, Wu B 1996 Appl. Phys. Lett. 68 2930

    [12]

    Rotermund F, Petrov V 1998 Opt. Lett. 23 1040

    [13]

    Kanai T, Kanda T, Sekikawa T 2004 J. Opt. Soc. Am. B 21 370

    [14]

    Chen C Z 2011 US patent 2 322 697 [2011-07-14]

    [15]

    Wang R, Teng H, Wang N, Han H N, Wang Z H, Wei Z Y, Hong M C, Lin W X 2014 Opt. Lett. 39 2105

    [16]

    Gao L L, Tan H M, Chen Y X 2003 Laser Technology 3 245 (in Chinese) [高兰兰,檀慧明, 陈颖新 2003 激光技术 3 245]

    [17]

    Gehr R J, Kimmel R W, Smith A V 1998 Opt. Lett. 23 1298

    [18]

    Huang J, Chang Y, Shen T, Yang Y 2008 Opt. Commun. 281 5244

    [19]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C 2014 Phys. Rev. B 89 115123

  • [1]

    Chen C T, Lin Z S 2004 J. Synth. Crys. 33 455 (in Chinese) [陈创天, 林哲帅 2004 人工晶体学报 33 455]

    [2]

    Chen C T, Liu L J 2007 J. Chin. Ceram. Soc. 35 1 (in Chinese) [陈创天, 刘丽娟 2007 硅酸盐学报 35 1]

    [3]

    Gao Z Y, Zhu J F, Tian W L, Wang J L, Wang Q, Zhang Z G, Wei Z Y, Yu H H, Zhang H J, Wang J Y 2014 Chin. Phys. B 23 054207

    [4]

    He J L, Lu X Q, Jia Y L 2000 Acta Phys. Sin. 49 2106 (in Chinese) [何京良, 卢兴强, 贾玉磊 2000 物理学报 49 2106]

    [5]

    Dubietis A, Tamošauskas G, Varanavičius A 2000 Opt. Lett. 25 1116

    [6]

    Liu H, Gong M L 2009 Acta Phys. Sin. 58 5443 (in Chinese) [刘欢, 巩马理 2009 物理学报 58 5443]

    [7]

    Nebel A, Beigang R 1991 Opt. Lett. 16 1729

    [8]

    Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 3979 (in Chinese) [刘华刚, 胡明列, 刘博文, 宋有建, 柴璐, 王清月 2010 物理学报 59 3979]

    [9]

    Wang G, Wang X, Zhou Y, Li C, Zhu Y, Xu Z, Chen C 2008 Appl. Opt. 47 486

    [10]

    Chen C, Togashi T, Suganuma T, Sekikawa T, Watanabe S, Xu Z, Wang J 2002 Opt. Lett. 27 637

    [11]

    Chen C, Xu Z, Deng D, Zhang J, Wong G, Wu B 1996 Appl. Phys. Lett. 68 2930

    [12]

    Rotermund F, Petrov V 1998 Opt. Lett. 23 1040

    [13]

    Kanai T, Kanda T, Sekikawa T 2004 J. Opt. Soc. Am. B 21 370

    [14]

    Chen C Z 2011 US patent 2 322 697 [2011-07-14]

    [15]

    Wang R, Teng H, Wang N, Han H N, Wang Z H, Wei Z Y, Hong M C, Lin W X 2014 Opt. Lett. 39 2105

    [16]

    Gao L L, Tan H M, Chen Y X 2003 Laser Technology 3 245 (in Chinese) [高兰兰,檀慧明, 陈颖新 2003 激光技术 3 245]

    [17]

    Gehr R J, Kimmel R W, Smith A V 1998 Opt. Lett. 23 1298

    [18]

    Huang J, Chang Y, Shen T, Yang Y 2008 Opt. Commun. 281 5244

    [19]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C 2014 Phys. Rev. B 89 115123

  • [1] 王涛, 彭雪芳, 贺亮, 沈小雨, 朱仁江, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 509 nm高功率宽调谐外腔面发射激光器. 物理学报, 2024, 73(12): 124204. doi: 10.7498/aps.73.20240499
    [2] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 物理学报, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [3] 石凉竹, 张萌, 储玉喜, 刘博文, 胡明列. 光纤飞秒激光五倍频产生206 nm深紫外激光. 物理学报, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [4] 王武越, 于宇, 李云飞, 王汞, 李凯, 王志永, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器. 物理学报, 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [5] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [6] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [7] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像. 物理学报, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [8] 曹辉, 宋有建, 于佳禾, 师浩森, 胡明列, 王清月. 奇异谱分析用于提升双光梳激光测距精度. 物理学报, 2018, 67(1): 010601. doi: 10.7498/aps.67.20171922
    [9] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [10] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [11] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量. 物理学报, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [12] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [13] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [14] 王振东, 梁变, 刘中波, 樊锡君. 飞秒啁啾Gauss型脉冲在稠密Λ型三能级原子介质中的传播. 物理学报, 2010, 59(10): 7041-7049. doi: 10.7498/aps.59.7041
    [15] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [16] 田金荣, 韩海年, 赵研英, 王 鹏, 张 炜, 魏志义. 基于啁啾镜色散补偿技术的超宽带飞秒激光脉冲. 物理学报, 2006, 55(9): 4725-4728. doi: 10.7498/aps.55.4725
    [17] 韩海年, 魏志义, 张 军, 聂玉昕. 飞秒钛宝石激光脉冲的载波包络相移测量研究. 物理学报, 2005, 54(1): 155-158. doi: 10.7498/aps.54.155
    [18] 王屹山, 刘红军, 程 昭, 赵 卫, 王勇刚, 马骁宇, 张志刚. 利用SBR实现自启动锁模钛宝石飞秒激光脉冲的产生. 物理学报, 2005, 54(11): 5184-5188. doi: 10.7498/aps.54.5184
    [19] 孙敬华, 章若冰, 胡有方, 张志刚, 王清月. 自启动KLM钛宝石激光器谐振腔的理论计算. 物理学报, 2002, 51(6): 1272-1278. doi: 10.7498/aps.51.1272
    [20] 董新永, 赵春柳, 关柏鸥, 谭华耀, 袁树忠, 开桂云, 董孝义. 可调谐光纤环形腔激光器输出特性的理论与实验研究. 物理学报, 2002, 51(12): 2750-2755. doi: 10.7498/aps.51.2750
计量
  • 文章访问数:  6271
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-02
  • 修回日期:  2015-03-05
  • 刊出日期:  2015-08-05

/

返回文章
返回