-
众所周知, 具有高布里渊增益的片上波导在光子学领域具有广泛的应用. 硅基片上布里渊激光器被广泛应用到频率可调谐激光发射、锁模脉冲激光器、低噪声振荡器和光学陀螺仪等领域. 然而, 在硅基布里渊激光器中实现布里渊激光输出往往需要较长的波导长度, 不利于片上集成. 本文提出了一种新型的波导结构, 由硫族化物As2S3矩形和一个空气细缝组成. 由于空气细缝的存在, 辐射压力使布里渊非线性的增强远远超过了仅由材料非线性产生的增强. 使得布里渊增益达到了1.78 × 105 W–1·m–1, 相比之前报道的后向受激布里渊散射(SBS)增益(2.88 × 104 W–1·m–1)扩大了将近10倍, 产生了4.2—7.0 GHz范围的声子频率调谐, 该方法为设计用于前向SBS的纳米级光波导提供了新的思路, 同时这种增强的宽带相干声子发射为片上CMOS信号处理技术的混合铺平了道路.As is well known, the on-chip waveguide with high Brillouin gain has many applications in the field of photonics. Brillouin lasers on silicon substrates are widely used in frequency tunable laser emission, mode-locked pulsed lasers, low-noise oscillators and optical gyroscopes. However, in a silicon-based Brillouin laser, a long waveguide length is still used to achieve Brillouin laser output, which is not conducive to on-chip integration. In this work is proposed a new type of waveguide structure consisting of chalcogenide As2S3 rectangles and an air slit. Owing to the existence of the air gap, the radiation pressure makes the enhancement of Brillouin nonlinearity much higher than the enhancement caused only by the material nonlinearity. This makes the Brillouin gain reach 1.78 × 105 W–1·m–1, which is nearly 10 times larger than the previously reported backward SBS gain of 2.88 × 104 W–1·m–1, resulting in phonon frequency tuning in a 4.2–7.0 GHz range. This method provides a new idea for designing nano-scaled optical waveguides for forward stimulated Brillouin scattering, and at the same time, this enhanced broadband coherent phonon emission paves the way for improving the hybrid on-chip CMOS signal processing technology.
-
Keywords:
- Brillouin gain /
- air slit /
- tunable
[1] Stiller B, Foaleng S M, Beugnot J C, Lee M W, Delque M, Bouwmans G, Kudlinski A, Thevenaz L, Maillotte H, Sylvestre T 2010 Opt. Express 18 20136Google Scholar
[2] Chin S, Primerov N, Thevenaz L 2012 IEEE Sens. J. 12 189Google Scholar
[3] Chin S, Gonzalez H M, Thevenaz L 2006 Opt. Express 14 10684Google Scholar
[4] Boyd R W, Gauthier D J 2009 Science 326 1074Google Scholar
[5] Chin S, Thevenaz L, Sancho J, Sales S, Capmany J, Berger P, Bourderionnet J, Dolfi D 2010 Opt. Express 18 22599Google Scholar
[6] Sancho J, Chin S, Sagues M, Loayssa A, Lloret J, Gasulla I, Sales S, Thevenaz L, Capmany J 2010 IEEE Photonics Technol. Lett. 22 1753Google Scholar
[7] Sancho J, Primerov N, Chin S, Antman Y, Zadok A, Sales S, Thevenaz L 2012 Opt. Express 20 6157Google Scholar
[8] Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M, Blumenthal D J 2018 Nat. Photonics 13 60
[9] Tow K H, Leguillon Y, Besnard P, Brilland L, Troles J, Toupin P, Mechin D, Tregoat D, Molin S 2012 Opt. Lett. 37 1157Google Scholar
[10] Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar
[11] Laer R V, Kuyken B, Thourhout D V, Baets R 2014 Opt. Lett. 39 1242Google Scholar
[12] Jouybari S N 2018 Photonics Nanostruct. 29 8Google Scholar
[13] Zhou L, Lu Y G, Fu Y Y, Ma H X, Du C L 2019 Opt. Express 27 24953Google Scholar
[14] Parameswaran K R, Route R K, Kurz J R, Roussev R V, Fejer M M, Fujimura M 2002 Opt. Lett. 27 179Google Scholar
[15] Miller G D, Batchko R G, Tulloch W M, Fejer M M, Byer R L 1997 Opt. Lett. 22 1834Google Scholar
[16] Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 1Google Scholar
[17] Agrawal G P 2005 Lect. Notes Phys. 18 1
[18] Damzen M J, Vlad V I, Babin V, Mocofanescu A 2010 CRC Press 33 26
[19] Mirnaziry S R, Wolff C, Steel M J, Eggleton B J, Poulton C G 2016 Opt. Express 24 4786
[20] Qiu W, Rakich P T, Shin H, Dong H, Soljačić M, Wang Z 2013 Opt. Express 21 31402Google Scholar
[21] Aryanfar I, Wolff C, Steel M J, Eggleton B J, Poulton C G 2014 Opt. Express 22 29270Google Scholar
[22] Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar
[23] Rakich P T, Davids P, Wang Z 2010 Opt. Express 18 14439Google Scholar
[24] Chiao R, Townes C, Stoicheff B 1964 Phys. Rev. Lett. 12 592Google Scholar
-
图 1 (a)悬浮波导系统的结构示意图; (b)悬浮波导设计图, t=215 nm, w=800 nm, 空气细缝长度s = 2 nm, 高度h = 213 nm; (c)光学色散图示意图, 光共振由沿着整体色散曲线(实线)的离散点(红色和蓝色)表示; (d)泵浦光转换为Stokes光和声子示意图. 图中ks和kp分别代表Stoke光和泵浦光的波矢; ωs, ωp, Ω分别代表Stokes光、泵浦光以及产生的声子频率
Fig. 1. (a) Schematic diagram of the structure of the suspended waveguide system; (b) design drawing of floating waveguide, t = 215 nm, w = 800 m, air slit length s = 2 nm, height h=213 nm; (b) schematic diagram of optical dispersion diagram, optical resonance is represented by discrete points (red and blue) along the overall dispersion curve (solid line); (d) schematic diagram of pump light conversion to stokes light and phonons. In the figure, ks and kp represent the wave vectors of stoke light and pump light, respectively. ωs, ωp, and Ω represent Stokes light, pump light, and generated phonon frequencies, respectively.
图 2 波导的光学模式和辐射压力分布 (a)左侧辐射压力分布示意图; (b)−(d) Ex, Ey和Ez场分量的基本光学模式的导向横向轮廓
Fig. 2. Optical mode and radiation pressure distribution of the waveguide: (a) Schematic diagram of the radiation pressure distribution on the left; (b)−(d) guiding lateral profiles of the fundamental optical modes of the Ex, Ey and Ez field components.
-
[1] Stiller B, Foaleng S M, Beugnot J C, Lee M W, Delque M, Bouwmans G, Kudlinski A, Thevenaz L, Maillotte H, Sylvestre T 2010 Opt. Express 18 20136Google Scholar
[2] Chin S, Primerov N, Thevenaz L 2012 IEEE Sens. J. 12 189Google Scholar
[3] Chin S, Gonzalez H M, Thevenaz L 2006 Opt. Express 14 10684Google Scholar
[4] Boyd R W, Gauthier D J 2009 Science 326 1074Google Scholar
[5] Chin S, Thevenaz L, Sancho J, Sales S, Capmany J, Berger P, Bourderionnet J, Dolfi D 2010 Opt. Express 18 22599Google Scholar
[6] Sancho J, Chin S, Sagues M, Loayssa A, Lloret J, Gasulla I, Sales S, Thevenaz L, Capmany J 2010 IEEE Photonics Technol. Lett. 22 1753Google Scholar
[7] Sancho J, Primerov N, Chin S, Antman Y, Zadok A, Sales S, Thevenaz L 2012 Opt. Express 20 6157Google Scholar
[8] Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M, Blumenthal D J 2018 Nat. Photonics 13 60
[9] Tow K H, Leguillon Y, Besnard P, Brilland L, Troles J, Toupin P, Mechin D, Tregoat D, Molin S 2012 Opt. Lett. 37 1157Google Scholar
[10] Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar
[11] Laer R V, Kuyken B, Thourhout D V, Baets R 2014 Opt. Lett. 39 1242Google Scholar
[12] Jouybari S N 2018 Photonics Nanostruct. 29 8Google Scholar
[13] Zhou L, Lu Y G, Fu Y Y, Ma H X, Du C L 2019 Opt. Express 27 24953Google Scholar
[14] Parameswaran K R, Route R K, Kurz J R, Roussev R V, Fejer M M, Fujimura M 2002 Opt. Lett. 27 179Google Scholar
[15] Miller G D, Batchko R G, Tulloch W M, Fejer M M, Byer R L 1997 Opt. Lett. 22 1834Google Scholar
[16] Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 1Google Scholar
[17] Agrawal G P 2005 Lect. Notes Phys. 18 1
[18] Damzen M J, Vlad V I, Babin V, Mocofanescu A 2010 CRC Press 33 26
[19] Mirnaziry S R, Wolff C, Steel M J, Eggleton B J, Poulton C G 2016 Opt. Express 24 4786
[20] Qiu W, Rakich P T, Shin H, Dong H, Soljačić M, Wang Z 2013 Opt. Express 21 31402Google Scholar
[21] Aryanfar I, Wolff C, Steel M J, Eggleton B J, Poulton C G 2014 Opt. Express 22 29270Google Scholar
[22] Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar
[23] Rakich P T, Davids P, Wang Z 2010 Opt. Express 18 14439Google Scholar
[24] Chiao R, Townes C, Stoicheff B 1964 Phys. Rev. Lett. 12 592Google Scholar
计量
- 文章访问数: 6403
- PDF下载量: 156
- 被引次数: 0