搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脊型悬浮波导布里渊激光器

王武越 于宇 李云飞 王汞 李凯 王志永 宋长禹 李森森 李宇海 刘彤宇 闫秀生 王雨雷 吕志伟

引用本文:
Citation:

脊型悬浮波导布里渊激光器

王武越, 于宇, 李云飞, 王汞, 李凯, 王志永, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟

Ridge-type suspended waveguide Brillouin laser

Wang Wu-Yue, Yu Yu, Li Yun-Fei, Wang Gong, Li Kai, Wang Zhi-Yong, Song Chang-Yu, Li Sen-Sen, Li Yu-Hai, Liu Tong-Yu, Yan Xiu-Sheng, Wang Yu-Lei, Lü Zhi-Wei
PDF
HTML
导出引用
  • 众所周知, 具有高布里渊增益的片上波导在光子学领域具有广泛的应用. 硅基片上布里渊激光器被广泛应用到频率可调谐激光发射、锁模脉冲激光器、低噪声振荡器和光学陀螺仪等领域. 然而, 在硅基布里渊激光器中实现布里渊激光输出往往需要较长的波导长度, 不利于片上集成. 本文提出了一种新型的波导结构, 由硫族化物As2S3矩形和一个空气细缝组成. 由于空气细缝的存在, 辐射压力使布里渊非线性的增强远远超过了仅由材料非线性产生的增强. 使得布里渊增益达到了1.78 × 105 W–1·m–1, 相比之前报道的后向受激布里渊散射(SBS)增益(2.88 × 104 W–1·m–1)扩大了将近10倍, 产生了4.2—7.0 GHz范围的声子频率调谐, 该方法为设计用于前向SBS的纳米级光波导提供了新的思路, 同时这种增强的宽带相干声子发射为片上CMOS信号处理技术的混合铺平了道路.
    As is well known, the on-chip waveguide with high Brillouin gain has many applications in the field of photonics. Brillouin lasers on silicon substrates are widely used in frequency tunable laser emission, mode-locked pulsed lasers, low-noise oscillators and optical gyroscopes. However, in a silicon-based Brillouin laser, a long waveguide length is still used to achieve Brillouin laser output, which is not conducive to on-chip integration. In this work is proposed a new type of waveguide structure consisting of chalcogenide As2S3 rectangles and an air slit. Owing to the existence of the air gap, the radiation pressure makes the enhancement of Brillouin nonlinearity much higher than the enhancement caused only by the material nonlinearity. This makes the Brillouin gain reach 1.78 × 105 W–1·m–1, which is nearly 10 times larger than the previously reported backward SBS gain of 2.88 × 104 W–1·m–1, resulting in phonon frequency tuning in a 4.2–7.0 GHz range. This method provides a new idea for designing nano-scaled optical waveguides for forward stimulated Brillouin scattering, and at the same time, this enhanced broadband coherent phonon emission paves the way for improving the hybrid on-chip CMOS signal processing technology.
      通信作者: 于宇, yuyu1990@hebut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075056, 62004059, 62005074, 61927815)和重点实验室基金(批准号: 61421070302)资助的课题
      Corresponding author: Yu Yu, yuyu1990@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075056, 62004059, 62005074, 61927815) and the Key Laboratory Fund Project, China (Grant No. 61421070302).
    [1]

    Stiller B, Foaleng S M, Beugnot J C, Lee M W, Delque M, Bouwmans G, Kudlinski A, Thevenaz L, Maillotte H, Sylvestre T 2010 Opt. Express 18 20136Google Scholar

    [2]

    Chin S, Primerov N, Thevenaz L 2012 IEEE Sens. J. 12 189Google Scholar

    [3]

    Chin S, Gonzalez H M, Thevenaz L 2006 Opt. Express 14 10684Google Scholar

    [4]

    Boyd R W, Gauthier D J 2009 Science 326 1074Google Scholar

    [5]

    Chin S, Thevenaz L, Sancho J, Sales S, Capmany J, Berger P, Bourderionnet J, Dolfi D 2010 Opt. Express 18 22599Google Scholar

    [6]

    Sancho J, Chin S, Sagues M, Loayssa A, Lloret J, Gasulla I, Sales S, Thevenaz L, Capmany J 2010 IEEE Photonics Technol. Lett. 22 1753Google Scholar

    [7]

    Sancho J, Primerov N, Chin S, Antman Y, Zadok A, Sales S, Thevenaz L 2012 Opt. Express 20 6157Google Scholar

    [8]

    Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M, Blumenthal D J 2018 Nat. Photonics 13 60

    [9]

    Tow K H, Leguillon Y, Besnard P, Brilland L, Troles J, Toupin P, Mechin D, Tregoat D, Molin S 2012 Opt. Lett. 37 1157Google Scholar

    [10]

    Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar

    [11]

    Laer R V, Kuyken B, Thourhout D V, Baets R 2014 Opt. Lett. 39 1242Google Scholar

    [12]

    Jouybari S N 2018 Photonics Nanostruct. 29 8Google Scholar

    [13]

    Zhou L, Lu Y G, Fu Y Y, Ma H X, Du C L 2019 Opt. Express 27 24953Google Scholar

    [14]

    Parameswaran K R, Route R K, Kurz J R, Roussev R V, Fejer M M, Fujimura M 2002 Opt. Lett. 27 179Google Scholar

    [15]

    Miller G D, Batchko R G, Tulloch W M, Fejer M M, Byer R L 1997 Opt. Lett. 22 1834Google Scholar

    [16]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 1Google Scholar

    [17]

    Agrawal G P 2005 Lect. Notes Phys. 18 1

    [18]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2010 CRC Press 33 26

    [19]

    Mirnaziry S R, Wolff C, Steel M J, Eggleton B J, Poulton C G 2016 Opt. Express 24 4786

    [20]

    Qiu W, Rakich P T, Shin H, Dong H, Soljačić M, Wang Z 2013 Opt. Express 21 31402Google Scholar

    [21]

    Aryanfar I, Wolff C, Steel M J, Eggleton B J, Poulton C G 2014 Opt. Express 22 29270Google Scholar

    [22]

    Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar

    [23]

    Rakich P T, Davids P, Wang Z 2010 Opt. Express 18 14439Google Scholar

    [24]

    Chiao R, Townes C, Stoicheff B 1964 Phys. Rev. Lett. 12 592Google Scholar

  • 图 1  (a)悬浮波导系统的结构示意图; (b)悬浮波导设计图, t=215 nm, w=800 nm, 空气细缝长度s = 2 nm, 高度h = 213 nm; (c)光学色散图示意图, 光共振由沿着整体色散曲线(实线)的离散点(红色和蓝色)表示; (d)泵浦光转换为Stokes光和声子示意图. 图中kskp分别代表Stoke光和泵浦光的波矢; ωs, ωp, Ω分别代表Stokes光、泵浦光以及产生的声子频率

    Fig. 1.  (a) Schematic diagram of the structure of the suspended waveguide system; (b) design drawing of floating waveguide, t = 215 nm, w = 800 m, air slit length s = 2 nm, height h=213 nm; (b) schematic diagram of optical dispersion diagram, optical resonance is represented by discrete points (red and blue) along the overall dispersion curve (solid line); (d) schematic diagram of pump light conversion to stokes light and phonons. In the figure, ks and kp represent the wave vectors of stoke light and pump light, respectively. ωs, ωp, and Ω represent Stokes light, pump light, and generated phonon frequencies, respectively.

    图 2  波导的光学模式和辐射压力分布 (a)左侧辐射压力分布示意图; (b)−(d) Ex, EyEz场分量的基本光学模式的导向横向轮廓

    Fig. 2.  Optical mode and radiation pressure distribution of the waveguide: (a) Schematic diagram of the radiation pressure distribution on the left; (b)−(d) guiding lateral profiles of the fundamental optical modes of the Ex, Ey and Ez field components.

    图 3  (a)不同声学模式下的声子振型图; (b) Q = 1000时, 不同声学模式下对应的布里渊增益

    Fig. 3.  (a) Phonon shape diagram under different acoustic modes; (b) when Q = 1000, the corresponding Brillouin gain under different acoustic modes.

    图 4  悬浮波导的6种声学模式. 显示了ux, uy分量的归一化最低一阶至六阶混合声波(E1−E6)的横向剖面

    Fig. 4.  Six acoustic modes of a suspended waveguide, showing the transverse section of the normalized mixed sound waves (E1−E6) of lowest first to sixth order of the ux and uy components.

    图 5  悬浮波导结构中光声耦合速率随波导长度变化的有限元模拟

    Fig. 5.  Finite element simulation of the photoacoustic coupling rate varying with the length of the waveguide in the suspended waveguide structure.

  • [1]

    Stiller B, Foaleng S M, Beugnot J C, Lee M W, Delque M, Bouwmans G, Kudlinski A, Thevenaz L, Maillotte H, Sylvestre T 2010 Opt. Express 18 20136Google Scholar

    [2]

    Chin S, Primerov N, Thevenaz L 2012 IEEE Sens. J. 12 189Google Scholar

    [3]

    Chin S, Gonzalez H M, Thevenaz L 2006 Opt. Express 14 10684Google Scholar

    [4]

    Boyd R W, Gauthier D J 2009 Science 326 1074Google Scholar

    [5]

    Chin S, Thevenaz L, Sancho J, Sales S, Capmany J, Berger P, Bourderionnet J, Dolfi D 2010 Opt. Express 18 22599Google Scholar

    [6]

    Sancho J, Chin S, Sagues M, Loayssa A, Lloret J, Gasulla I, Sales S, Thevenaz L, Capmany J 2010 IEEE Photonics Technol. Lett. 22 1753Google Scholar

    [7]

    Sancho J, Primerov N, Chin S, Antman Y, Zadok A, Sales S, Thevenaz L 2012 Opt. Express 20 6157Google Scholar

    [8]

    Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M, Blumenthal D J 2018 Nat. Photonics 13 60

    [9]

    Tow K H, Leguillon Y, Besnard P, Brilland L, Troles J, Toupin P, Mechin D, Tregoat D, Molin S 2012 Opt. Lett. 37 1157Google Scholar

    [10]

    Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar

    [11]

    Laer R V, Kuyken B, Thourhout D V, Baets R 2014 Opt. Lett. 39 1242Google Scholar

    [12]

    Jouybari S N 2018 Photonics Nanostruct. 29 8Google Scholar

    [13]

    Zhou L, Lu Y G, Fu Y Y, Ma H X, Du C L 2019 Opt. Express 27 24953Google Scholar

    [14]

    Parameswaran K R, Route R K, Kurz J R, Roussev R V, Fejer M M, Fujimura M 2002 Opt. Lett. 27 179Google Scholar

    [15]

    Miller G D, Batchko R G, Tulloch W M, Fejer M M, Byer R L 1997 Opt. Lett. 22 1834Google Scholar

    [16]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 1Google Scholar

    [17]

    Agrawal G P 2005 Lect. Notes Phys. 18 1

    [18]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2010 CRC Press 33 26

    [19]

    Mirnaziry S R, Wolff C, Steel M J, Eggleton B J, Poulton C G 2016 Opt. Express 24 4786

    [20]

    Qiu W, Rakich P T, Shin H, Dong H, Soljačić M, Wang Z 2013 Opt. Express 21 31402Google Scholar

    [21]

    Aryanfar I, Wolff C, Steel M J, Eggleton B J, Poulton C G 2014 Opt. Express 22 29270Google Scholar

    [22]

    Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar

    [23]

    Rakich P T, Davids P, Wang Z 2010 Opt. Express 18 14439Google Scholar

    [24]

    Chiao R, Townes C, Stoicheff B 1964 Phys. Rev. Lett. 12 592Google Scholar

  • [1] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] 王涛, 彭雪芳, 贺亮, 沈小雨, 朱仁江, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 509 nm高功率宽调谐外腔面发射激光器. 物理学报, 2024, 73(12): 124204. doi: 10.7498/aps.73.20240499
    [3] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 物理学报, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [4] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] 魏晨崴, 曹暾. 基于α-MoO3的可调谐法布里-珀罗谐振腔比色生物传感器. 物理学报, 2021, 70(4): 048701. doi: 10.7498/aps.70.20201548
    [6] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [7] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [8] 王武越, Yu Yu, 李云飞, 王汞, 李凯, 王志勇, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器(光电技术与应用). 物理学报, 2021, (): . doi: 10.7498/aps.70.20211539
    [9] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [10] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌. 基于波长双环路结构的新型光电振荡器的研究. 物理学报, 2015, 64(15): 154204. doi: 10.7498/aps.64.154204
    [11] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器. 物理学报, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [12] 郑狄, 潘炜, 闫连山, 罗斌, 邹喜华, 刘新开, 易安林. 基于布里渊载波相移的宽带可调谐二倍频微波信号生成. 物理学报, 2014, 63(15): 154214. doi: 10.7498/aps.63.154214
    [13] 阴明, 周寿桓, 冯国英. 可调谐准相位匹配高效宽带二次谐波转换. 物理学报, 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [14] 于国君, 卜胜利, 王响, 纪红柱. 基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究. 物理学报, 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [15] 张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令. 光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响. 物理学报, 2011, 60(10): 104211. doi: 10.7498/aps.60.104211
    [16] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [17] 张超, 饶云江, 贾新鸿, 苌亮, 冉曾令. 基于双向拉曼放大的布里渊光时域分析系统. 物理学报, 2010, 59(8): 5523-5527. doi: 10.7498/aps.59.5523
    [18] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, 2008, 57(1): 194-199. doi: 10.7498/aps.57.194
    [19] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [20] 董新永, 赵春柳, 关柏鸥, 谭华耀, 袁树忠, 开桂云, 董孝义. 可调谐光纤环形腔激光器输出特性的理论与实验研究. 物理学报, 2002, 51(12): 2750-2755. doi: 10.7498/aps.51.2750
计量
  • 文章访问数:  6403
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 修回日期:  2021-09-14
  • 上网日期:  2022-01-13
  • 刊出日期:  2022-01-20

/

返回文章
返回