-
光纤激光器作为推动各领域发展的基础硬件, 在轨道交通、光纤通信、新材料制造、动力电池加工、军事国防和医疗等领域都有广泛的应用价值. 光纤激光器被动锁模技术的核心器件是可饱和吸收体, 它对光纤激光器实现高能量、窄脉宽、大功率的激光输出起决定性作用. 依托传统材料和传统结构的可饱和吸收体, 由于无散热机制, 光作用到材料上的光斑大小与光纤出射直径几乎相同, 容易超过可饱和吸收体的损伤阈值从而造成损坏. 因此, 调整可饱和吸收体制备工艺和结构, 对于提高可饱和吸收体的损伤阈值, 实现性能优良、稳定性高的脉冲激光具有重要意义. 本文综述了高损伤阈值可饱和吸收体国内外研究现状, 指出了高损伤阈值可饱和吸收体可能的发展方向.As the basic hardware to promote the development of various fields, fiber laser has great development potential in rail transit, optical communication, new material manufacturing, power battery processing, military defense, medical treatment, and other fields. As the core device of passively mode-locked fiber laser, a high damage threshold saturable absorber plays a decisive role in achieving high power, ultrashort pulse duration, and high energy laser output for a fiber laser. For saturable absorbers of traditional materials and structures, the spot size of light acting on the material is almost the same as the exit diameter of the optical fiber, which is easy to exceed the damage threshold of the saturable absorber and lead to damage. To improve the damage threshold of saturable absorbers, the structure of saturable absorbers based on both real materials and traditional saturable absorbers can be optimized. On the one hand, the preparation technology of the saturable absorber is adjusted, such as using the sol-gel method, which has a good effect on improving the damage threshold of the saturable absorber. Moreover, different materials are selected and used as substrates, such as the use of inorganic materials as material substrates and the selection of a variety of insertion cavity structures, such as “sandwich” transmission structures, tapered fibers, and photonic crystal fibers. These methods are of great significance in improving the damage threshold of the real material saturable absorber and realizing pulsed laser with excellent performance and high stability. On the other hand, the equivalent saturable absorber structure is used to improve the damage threshold and optimize the laser performance, such as hybrid mode-locked structure and nonlinear multimode interference. The continuous optimization of the fiber laser damage threshold will further expand its application range. Therefore, it is important to adjust the preparation process and insert the cavity structure of saturable absorbers for improving the damage threshold of the saturable absorber and achieving high performance and stability of the pulsed laser. This paper reviews the research status of high damage threshold saturable absorbers at home and abroad, summarizes the latest methods to improve material damage threshold and the latest research progress of equivalent saturable absorbers, and also points out the future development direction of high damage threshold saturable absorbers.
-
Keywords:
- ultrafast fiber laser /
- saturable absorber /
- high damage threshold
[1] Wang X Z, Wang Z H, Wang Y Y, Zhang X, Song J J, Wei Z Y 2021 Chin. Phys. Lett. 38 074202Google Scholar
[2] Jiang J W, Fang S B, Zhang Z Y, Zhu J F, Han H N, Chang G Q, Wei Z Y 2020 Chin. Phys. Lett. 37 054201Google Scholar
[3] Ning F J, Li Z Y, Tan R Q, Hu L M, Liu S Y 2020 Chin. Phys. Lett. 37 034203Google Scholar
[4] Xing Z Q, Zhou Y J, Liu Y H, Wang F 2020 Chin. Phys. Lett. 37 027302Google Scholar
[5] Ni X, Jia K P, Wang X H, et al. 2021 Chin. Phys. Lett. 38 064201Google Scholar
[6] Keller U 2003 Nature 424 831Google Scholar
[7] 王井上, 张瑶, 王军利, 魏志义, 常国庆 2021 物理学报 70 034206Google Scholar
Wang J S, Zhang Y, Wang J L,Wei Z Y, Chang G Q 2021 Acta Phys. Sin. 70 034206Google Scholar
[8] Lv R C, Teng H, Song J J, Kang R Z, Zhu J F, Wei Z Y 2021 Chin. Phys. B 30 094206Google Scholar
[9] Fermann M E, Hofer M, Haberl F, Craig-Ryan S P 1990 Electron. Lett. 26 1737Google Scholar
[10] Keller U, Knox W H, Roskos H 1990 Springer Berlin Heidelberg 53 69Google Scholar
[11] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar
Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar
[12] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 物理学报 69 184205Google Scholar
Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar
[13] Valdmanis J A, Fork R L 1986 IEEE J. Quantum Electron. 22 112Google Scholar
[14] Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar
[15] Delhaes P 2002 Carbon 40 641Google Scholar
[16] Ji D X, Cai S H, Paudel T R, et al. 2019 Nature 570 87Google Scholar
[17] Cicily Rigi V J, Jayaraj M K, Saji K J 2020 Appl. Surf. Sci. 529 147158Google Scholar
[18] Arthur J R 1980 At & T Tech. J. 10 157Google Scholar
[19] Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M, Wei Z Y 2018 Photonics Res. 6 220Google Scholar
[20] Chen Z, Wang H, Wang Y, Lv R, Yang X, Wang J, Li L, Ren W 2019 Carbon 144 737Google Scholar
[21] Chen Z, Wang Y, Lv R, Liu S, Wang Y 2020 Opt. Fiber Technol. 58 102189Google Scholar
[22] Liu S C, Lv R D, Wang Y G, Shang S G, Ren W, Xu Q 2021 J. Mater. Chem. C 9 9021Google Scholar
[23] Li L, Jiang S Z, Wang Y G, Wang X, Duan L N, Mao D, Li Z, Man B Y, Si J H 2015 Opt. Express 23 28698Google Scholar
[24] Liu S, Wang Y, Lv R, Wang J, Duan L 2020 Nanophotonics 9 2523Google Scholar
[25] Zhang Z F, Li S, Li Y, Kou Y, Liu K, Lin Y Y, Yuan L, Xu Y T, Peng Q J, Xu Z Y 2020 Chin. Phys. Lett. 37 064203Google Scholar
[26] Zhang M, Zhu Y, Li D, Feng P, Xu C 2021 Appl. Surf. Sci. 554 149615Google Scholar
[27] Liu H H, Yang Y, Chow K K 2013 Opt. Express 21 18975Google Scholar
[28] Han X, Zhang H, Jiang S, Zhang C, Li D, Guo Q, Gao J, Man B 2019 Nanomaterials 9 1216Google Scholar
[29] Ma P, Lin W, Zhang H, Xu S, Yang Z 2019 IEEE Photonics J. 11 1Google Scholar
[30] Wang Y, Song C, Zhang H, Jin L, Xu Y, Ma X, Zou Y 2022 Opt. Laser Technol. 145 107542Google Scholar
[31] Salam S, Nizamani B, Yasin M, Harun S W 2021 Results Opt. 2 100036Google Scholar
[32] Wu Q, Jin X, Chen S, Jiang X, Hu Y, Jiang Q, Wu L, Li J, Zheng Z, Zhang M, Zhang H 2019 Opt. Express 27 10159
[33] Song Y W, Yamashita S, Maruyama S 2008 Appl. Phys. Lett. 92 137Google Scholar
[34] Nizamani B, Salam S, Jafry A A A, et al. 2020 Chin. Phys. Lett. 37 054202Google Scholar
[35] Liu S, Shang S, Lv R, Wang Y, Wang J, Ren W, Wang Y 2021 ACS Appl. Mater. Interfaces 13 19128Google Scholar
[36] Michaille L F, Taylor D M, Bennett C, Shepherd T J, Jacobsen C, Hansen T P 2004 Physica A 5618 30Google Scholar
[37] Fermann M E, Andrejco M J, Silberberg Y, Stock M L 1993 Opt. Lett. 18 894Google Scholar
[38] Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar
[39] Qi Y, Liu M, Luan N, Yang S, Bai Z, Yan B, Lu Z 2022 Infrared Phys. Technol. 121 104017Google Scholar
[40] Zhao L M, Lu C, Tam H Y, Wai P, Tang D Y 2009 Appl. Opt. 48 5131Google Scholar
[41] Wang Y Z, Zhang L Q, Zhuo Z, Guo S Z 2016 Appl. Opt. 55 5766
[42] Szczepanek J, Karda’s T M, Radzewicz C, Stepanenko Y 2017 Opt. Lett. 42 575Google Scholar
[43] Wang Y, Wang C, Zhang F, Guo J, Ma C, Huang W, Song Y, Ge Y, Liu J, Zhang H 2020 Rep. Prog. Phys. 83 116401
[44] Andral U, Fodil R S, Amrani F, Billard F, Hertz E, Grelu P 2015 Optica 2 275Google Scholar
[45] Pu G, Yi L, Zhang L, Hu W 2019 Optica 6 362Google Scholar
[46] Baumeister T, Brunton S L, Kutz J N 2018 J. Opt. Soc. Am. B 35 617Google Scholar
[47] Pu G, Yi L, Zhang L, Luo C, Li Z, Hu W 2020 Light Sci. Appl. 9 1Google Scholar
[48] Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, Wei Z Y 2017 Opt. Express 25 2950Google Scholar
[49] Chernysheva M, Bednyakova A, Al Araimi M, et al. 2017 Sci. Rep. 7 1Google Scholar
[50] Ma C, Huang W, Wang Y, Adams J, Wang Z, Liu J, Zhang H 2020 Nanophotonics 9 2451Google Scholar
[51] Pang L, Wang R, Li L, Wu R, Lv Y 2020 Infrared Phys. Technol. 110 103444Google Scholar
[52] Dou Z Y, Zhang B, Cai J H, Hou J 2020 Chin. Phys. B 29 094201Google Scholar
[53] Santiago-Hernandez H, Pottiez O, Duran-Sanchez M, et al. 2015 Opt. Express 23 18840Google Scholar
[54] Aguergaray C, Broderick N G, Erkintalo M, Chen J S, Kruglov V 2012 Opt. Express 20 10545Google Scholar
[55] Aguergaray C, Hawker R, Runge A F, Erkintalo M, Broderick N G 2013 Appl. Phys. Lett. 103 3550Google Scholar
[56] Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar
[57] Deng D, Zhang H, Gong Q, He L, Li D, Gong M 2020 Opt. Laser Technol. 125 106010Google Scholar
[58] Deng D, Zhang H, Zu J, Chen J 2021 Opt. Lett. 46 1612Google Scholar
[59] Nazemosadat E, Mafi A 2013 J. Opt. Soc. Am. B 30 1357Google Scholar
[60] Te˘gin U, Orta c B 2018 Opt. Lett. 43 1611Google Scholar
[61] Zhao F Y, Wang H S, Hu X H, Wang Y S, Zhang W, Zhang T, Sun C D, Yan Z J 2018 Laser Phys. Lett. 15 115106Google Scholar
[62] Chen G W, Wang H G, Zhu J, Li H Y, Zhu L Q 2021 Infrared Phys. Technol. 112 103607Google Scholar
[63] Gan Y P, Wu Q C, Yao Y, Liu C Y, Fu Y P, Yang Y F, Tian J J, Xu K 2021 Opt. Commun. 479 126441Google Scholar
[64] Huang L, Zhang Y S, Cui Y D 2021 Chin. Phys. B 30 114203Google Scholar
-
图 4 拉锥光纤WS2 SA被动锁模掺铒光纤激光器的实验结果 (a)脉冲光谱, 中心波长1540 nm的3 dB带宽为114 nm; (b)脉冲宽度为67 fs[48]
Fig. 4. Experimental results of the passively mode-locked EDF laser with the fiber-taper WS2 SA: (a) Optical spectrum of the generated pulses. The 3 dB spectral width is 114 nm at 1540 nm. (b) Intensity autocorrelation trace with 67 fs pulse duration[48].
-
[1] Wang X Z, Wang Z H, Wang Y Y, Zhang X, Song J J, Wei Z Y 2021 Chin. Phys. Lett. 38 074202Google Scholar
[2] Jiang J W, Fang S B, Zhang Z Y, Zhu J F, Han H N, Chang G Q, Wei Z Y 2020 Chin. Phys. Lett. 37 054201Google Scholar
[3] Ning F J, Li Z Y, Tan R Q, Hu L M, Liu S Y 2020 Chin. Phys. Lett. 37 034203Google Scholar
[4] Xing Z Q, Zhou Y J, Liu Y H, Wang F 2020 Chin. Phys. Lett. 37 027302Google Scholar
[5] Ni X, Jia K P, Wang X H, et al. 2021 Chin. Phys. Lett. 38 064201Google Scholar
[6] Keller U 2003 Nature 424 831Google Scholar
[7] 王井上, 张瑶, 王军利, 魏志义, 常国庆 2021 物理学报 70 034206Google Scholar
Wang J S, Zhang Y, Wang J L,Wei Z Y, Chang G Q 2021 Acta Phys. Sin. 70 034206Google Scholar
[8] Lv R C, Teng H, Song J J, Kang R Z, Zhu J F, Wei Z Y 2021 Chin. Phys. B 30 094206Google Scholar
[9] Fermann M E, Hofer M, Haberl F, Craig-Ryan S P 1990 Electron. Lett. 26 1737Google Scholar
[10] Keller U, Knox W H, Roskos H 1990 Springer Berlin Heidelberg 53 69Google Scholar
[11] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar
Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar
[12] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 物理学报 69 184205Google Scholar
Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar
[13] Valdmanis J A, Fork R L 1986 IEEE J. Quantum Electron. 22 112Google Scholar
[14] Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar
[15] Delhaes P 2002 Carbon 40 641Google Scholar
[16] Ji D X, Cai S H, Paudel T R, et al. 2019 Nature 570 87Google Scholar
[17] Cicily Rigi V J, Jayaraj M K, Saji K J 2020 Appl. Surf. Sci. 529 147158Google Scholar
[18] Arthur J R 1980 At & T Tech. J. 10 157Google Scholar
[19] Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M, Wei Z Y 2018 Photonics Res. 6 220Google Scholar
[20] Chen Z, Wang H, Wang Y, Lv R, Yang X, Wang J, Li L, Ren W 2019 Carbon 144 737Google Scholar
[21] Chen Z, Wang Y, Lv R, Liu S, Wang Y 2020 Opt. Fiber Technol. 58 102189Google Scholar
[22] Liu S C, Lv R D, Wang Y G, Shang S G, Ren W, Xu Q 2021 J. Mater. Chem. C 9 9021Google Scholar
[23] Li L, Jiang S Z, Wang Y G, Wang X, Duan L N, Mao D, Li Z, Man B Y, Si J H 2015 Opt. Express 23 28698Google Scholar
[24] Liu S, Wang Y, Lv R, Wang J, Duan L 2020 Nanophotonics 9 2523Google Scholar
[25] Zhang Z F, Li S, Li Y, Kou Y, Liu K, Lin Y Y, Yuan L, Xu Y T, Peng Q J, Xu Z Y 2020 Chin. Phys. Lett. 37 064203Google Scholar
[26] Zhang M, Zhu Y, Li D, Feng P, Xu C 2021 Appl. Surf. Sci. 554 149615Google Scholar
[27] Liu H H, Yang Y, Chow K K 2013 Opt. Express 21 18975Google Scholar
[28] Han X, Zhang H, Jiang S, Zhang C, Li D, Guo Q, Gao J, Man B 2019 Nanomaterials 9 1216Google Scholar
[29] Ma P, Lin W, Zhang H, Xu S, Yang Z 2019 IEEE Photonics J. 11 1Google Scholar
[30] Wang Y, Song C, Zhang H, Jin L, Xu Y, Ma X, Zou Y 2022 Opt. Laser Technol. 145 107542Google Scholar
[31] Salam S, Nizamani B, Yasin M, Harun S W 2021 Results Opt. 2 100036Google Scholar
[32] Wu Q, Jin X, Chen S, Jiang X, Hu Y, Jiang Q, Wu L, Li J, Zheng Z, Zhang M, Zhang H 2019 Opt. Express 27 10159
[33] Song Y W, Yamashita S, Maruyama S 2008 Appl. Phys. Lett. 92 137Google Scholar
[34] Nizamani B, Salam S, Jafry A A A, et al. 2020 Chin. Phys. Lett. 37 054202Google Scholar
[35] Liu S, Shang S, Lv R, Wang Y, Wang J, Ren W, Wang Y 2021 ACS Appl. Mater. Interfaces 13 19128Google Scholar
[36] Michaille L F, Taylor D M, Bennett C, Shepherd T J, Jacobsen C, Hansen T P 2004 Physica A 5618 30Google Scholar
[37] Fermann M E, Andrejco M J, Silberberg Y, Stock M L 1993 Opt. Lett. 18 894Google Scholar
[38] Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar
[39] Qi Y, Liu M, Luan N, Yang S, Bai Z, Yan B, Lu Z 2022 Infrared Phys. Technol. 121 104017Google Scholar
[40] Zhao L M, Lu C, Tam H Y, Wai P, Tang D Y 2009 Appl. Opt. 48 5131Google Scholar
[41] Wang Y Z, Zhang L Q, Zhuo Z, Guo S Z 2016 Appl. Opt. 55 5766
[42] Szczepanek J, Karda’s T M, Radzewicz C, Stepanenko Y 2017 Opt. Lett. 42 575Google Scholar
[43] Wang Y, Wang C, Zhang F, Guo J, Ma C, Huang W, Song Y, Ge Y, Liu J, Zhang H 2020 Rep. Prog. Phys. 83 116401
[44] Andral U, Fodil R S, Amrani F, Billard F, Hertz E, Grelu P 2015 Optica 2 275Google Scholar
[45] Pu G, Yi L, Zhang L, Hu W 2019 Optica 6 362Google Scholar
[46] Baumeister T, Brunton S L, Kutz J N 2018 J. Opt. Soc. Am. B 35 617Google Scholar
[47] Pu G, Yi L, Zhang L, Luo C, Li Z, Hu W 2020 Light Sci. Appl. 9 1Google Scholar
[48] Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, Wei Z Y 2017 Opt. Express 25 2950Google Scholar
[49] Chernysheva M, Bednyakova A, Al Araimi M, et al. 2017 Sci. Rep. 7 1Google Scholar
[50] Ma C, Huang W, Wang Y, Adams J, Wang Z, Liu J, Zhang H 2020 Nanophotonics 9 2451Google Scholar
[51] Pang L, Wang R, Li L, Wu R, Lv Y 2020 Infrared Phys. Technol. 110 103444Google Scholar
[52] Dou Z Y, Zhang B, Cai J H, Hou J 2020 Chin. Phys. B 29 094201Google Scholar
[53] Santiago-Hernandez H, Pottiez O, Duran-Sanchez M, et al. 2015 Opt. Express 23 18840Google Scholar
[54] Aguergaray C, Broderick N G, Erkintalo M, Chen J S, Kruglov V 2012 Opt. Express 20 10545Google Scholar
[55] Aguergaray C, Hawker R, Runge A F, Erkintalo M, Broderick N G 2013 Appl. Phys. Lett. 103 3550Google Scholar
[56] Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar
[57] Deng D, Zhang H, Gong Q, He L, Li D, Gong M 2020 Opt. Laser Technol. 125 106010Google Scholar
[58] Deng D, Zhang H, Zu J, Chen J 2021 Opt. Lett. 46 1612Google Scholar
[59] Nazemosadat E, Mafi A 2013 J. Opt. Soc. Am. B 30 1357Google Scholar
[60] Te˘gin U, Orta c B 2018 Opt. Lett. 43 1611Google Scholar
[61] Zhao F Y, Wang H S, Hu X H, Wang Y S, Zhang W, Zhang T, Sun C D, Yan Z J 2018 Laser Phys. Lett. 15 115106Google Scholar
[62] Chen G W, Wang H G, Zhu J, Li H Y, Zhu L Q 2021 Infrared Phys. Technol. 112 103607Google Scholar
[63] Gan Y P, Wu Q C, Yao Y, Liu C Y, Fu Y P, Yang Y F, Tian J J, Xu K 2021 Opt. Commun. 479 126441Google Scholar
[64] Huang L, Zhang Y S, Cui Y D 2021 Chin. Phys. B 30 114203Google Scholar
计量
- 文章访问数: 8287
- PDF下载量: 322
- 被引次数: 0