搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铋可饱和吸收体的超快激光产生

袁浩 朱方祥 王金涛 杨蓉 王楠 于洋 闫培光 郭金川

引用本文:
Citation:

基于铋可饱和吸收体的超快激光产生

袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川

Generation of ultra-fast pulse based on bismuth saturable absorber

Yuan Hao, Zhu Fang-Xiang, Wang Jin-Tao, Yang Rong, Wang Nan, Yu Yang, Yan Pei-Guang, Guo Jin-Chuan
PDF
HTML
导出引用
  • 采用磁控溅射沉积法在微纳光纤表面上镀一层纳米级厚度的铋薄膜, 制备了一种微纳光纤-铋膜结构的可饱和吸收体. 在1.5 μm处的非线性光调制深度为14%. 将其应用到掺铒光纤激光器中, 在1.5 μm波段获得稳定的超快脉冲激光产生, 脉宽为357 fs, 输出功率为45.4 mW, 单脉冲能量为2.39 nJ, 信噪比为84 dB. 实验结果表明, 利用磁控溅射法可制备出大调制深度的可饱和吸收体, 为获得高能量超短脉冲激光输出提供新方案.
    We demonstrate a bismuth (Bi) saturable absorber (SA) for generating ultrafast pulse. The Bi SA is fabricated by the Bi film deposited on the surface of microfibers through using magnetron sputtering. Its nonlinear optical properties are investigated. The as-prepared Bi SA has outstanding nonlinear absorption property demonstrated by the open aperture (OA) Z-scan system at 1500 nm and balanced twin-detector method at 1560 nm. The nonlinear optical property of Bi SA shows that the modulation depth, the nonsaturable losses, and the saturable intensity at 1.5 μm are 14% and 79%, and 0.9 MW/cm2, respectively. Besides, the closed aperture (CA) Z-scan measurement is also implemented to estimate the nonlinear refractive index of Bi film. The Bi film shows that the typical CA/OA curve possesses the feature of peak-valley profile, meaning that the sample with a negative nonlinear refractive index is self-defocusing. In our experiments, the parameters of the nonlinear absorption coefficient β and the nonlinear refractive index n2 are estimated at about 2.38 × 10–4 cm/W and –1.47 × 10–9 cm2/W according to the actual experimental data points, respectively. To further investigate its nonlinear optical property, the microfiber-based Bi SA is embedded into an erbium-doped fiber laser with a typical ring cavity structure. Based on the Bi SA device, the stable ultrafast pulses are generated at 1.5 μm with the pulse width of 357 fs, the output power of 45.4 mW, corresponding to the pulse energy of 2.39 nJ, and the signal-to-noise ratio is 84 dB. The stable soliton pulses emitting at 1563 nm are obtained with a 3-dB and 6-nm spectral bandwidth. The experimental results suggest that the microfiber-based Bi SA prepared by magnetron sputtering deposition (MSD) technique can be used as an excellent photonic device for ultrafast pulse generation in the 1.5 μm regime, and the MSD technique opens a promising way to produce high-performance SA with a large modulation depth, low saturable intensity, and high power tolerance, which are conducible to the generation of high power and ultrafast pulse with high stability.
      通信作者: 王楠, nwang@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704260, 61775146, 61773266, 11904240)、深圳市知识创新计划基础研究项目(批准号: JCYJ20170818144254033, JCYJ20190808141011530)、广东省自然科学基金(批准号: 2018A030310637)和深圳大学新引进教师科研启动项目(批准号: 2017020)资助的课题
      Corresponding author: Wang Nan, nwang@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704260, 61775146, 61773266, 11904240), the Science and Technology Research and Development Foundation of Shenzhen, China (Grant No. JCYJ20170818144254033, JCYJ20190808141011530), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030310637) and the Start-up project of scientific research for new teachers of Shenzhen University, China (Grant No. 2017020)
    [1]

    Woodward R I, Kelleher E J R 2015 Appl. Sci. 5 1440Google Scholar

    [2]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar

    [3]

    Lagatsky A A, Fusari F, Calvez S, Kurilchik S V, Kisel V E, Kuleshov N V, Dawson M D, Brown C T A, Sibbett W 2010 Opt. Lett. 35 172Google Scholar

    [4]

    Popa D, Sun Z, Torrisi F, Hasan T, Wang F, Ferrari A C 2010 Appl. Phys. Lett. 97 203106Google Scholar

    [5]

    Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K, Yeom D I 2016 Opt. Express 24 14152Google Scholar

    [6]

    Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P 2011 Nano Res. 4 297Google Scholar

    [7]

    Li J, Luo H, Wang L, Zhao C, Zhang H, Li H, Liu Y 2015 Opt. Lett. 40 3659Google Scholar

    [8]

    Yan P, Jiang Z, Chen H, Yin J, Lai J, Wang J, He T, Yang J 2018 Opt. Lett. 43 4417Google Scholar

    [9]

    Jiang Z, Li J, Chen H, Wang J, Zhang W, Yan P 2018 Opt. Commun. 406 44Google Scholar

    [10]

    Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J 2015 Photonics Res. 3 A79Google Scholar

    [11]

    Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H, Zhao J 2016 Small 12 1489Google Scholar

    [12]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2018 Photonics Res. 6 535Google Scholar

    [13]

    Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C, Zhang H 2015 Opt. Express 23 20030Google Scholar

    [14]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar

    [15]

    Qin Z, Xie G, Zhao C, Wen S, Yuan P, Qian L 2016 Opt. Lett. 41 56Google Scholar

    [16]

    Song Y W, Jang S Y, Han W S, Bae M K 2010 Appl. Phys. Lett. 96 051122Google Scholar

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Mater. Express 5 2884Google Scholar

    [18]

    Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar

    [19]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [20]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mater. Interfaces 7 11490Google Scholar

    [21]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [22]

    Zhao M, Zhang X, Li L 2015 Sci. Rep. 5 16108Google Scholar

    [23]

    Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G, Fiori G 2016 Nat. Commun. 7 12585Google Scholar

    [24]

    Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J, Zamora F 2016 Adv. Mater. 28 6515Google Scholar

    [25]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y, Zeng H 2016 Nat. Commun. 7 13352Google Scholar

    [26]

    Jiang Z, Chen H, Li J, Yin J, Wang J, Yan P 2017 Appl. Phys. Express 10 122702Google Scholar

    [27]

    Haro-Poniatowski E, Jouanne M, Morhange J F, Kanehisa M, Serna R, Afonso C N 1999 Phys. Rev. B 60 10080Google Scholar

    [28]

    Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [29]

    Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H 2018 Nanoscale 10 17617Google Scholar

    [30]

    Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H, Zhang F, Ge Y, Zhang H 2018 Opt. Express 26 22750Google Scholar

    [31]

    Yang Q, Liu R, Huang C, Huang Y, Gao L, Sun B, Huang Z, Zhang L, Hu C, Zhang Z, Sun C, Wang Q, Tang Y, Zhang H 2018 Nanoscale 10 21106Google Scholar

    [32]

    Wang C, Wang L, Li X, Luo W, Feng T, Zhang Y, Guo P, Ge Y 2019 Nanotechnology 30 025204

    [33]

    Guo P, Li X, Chai T, Feng T, Ge Y, Song Y, Wang Y 2019 Nanotechnology 30 354002Google Scholar

  • 图 1  铋薄膜表征结果 (a)覆盖铋薄膜拉锥光纤的锥区扫描电子显微镜图像, 插图为铋薄膜的表面形貌; (b)镀铋膜的光纤端面; (c)铋薄膜沉积在光纤上的厚度; (d)铋薄膜的拉曼光谱; (e)铋薄膜的XRD图; (f)铋薄膜的线性透过率

    Fig. 1.  Bi film characterization results: (a) Scanning electron microscope images for the taper region of the microfiber coated with the bismuth film (the inset shows the surface morphology of the bismuth film); (b) optical fiber end face with bismuth coating; (c) thickness of bismuth thin film deposited on optical fiber; (d) Raman spectrum of bismuth film; (e) XRD diagram of the bismuth film; (f) linear transmittance of bismuth thin film.

    图 2  微纳光纤-铋SA的非线性表征 (a)没有和(b)具有650 nm引导光时样品腰部区域的光学显微镜图像; (c) SA的饱和吸收特性

    Fig. 2.  Nonlinear characterization of micro-nano fiber-bismuth SA: Optical microscope images of the waist region of the sample (a) without and (b) with the guiding 650 nm light; (c) saturable absorption property of SA.

    图 3  (a)不同激发功率下的标准开孔Z扫描曲线; (b)标准化的闭孔/开孔Z扫描曲线

    Fig. 3.  (a) Normalized open-aperture Z-scan traces with different excitation powers; (b) normalized close-aperture/ open-aperture Z-scan trace.

    图 4  实验装置图

    Fig. 4.  Experimental device diagram.

    图 5  1.5 μm锁模特性 (a)锁模光谱; (b)基频为19.0 MHz、分辨率为10 Hz的射频频谱, 插图显示了2 GHz跨度的射频频谱; (c)具有sech2拟合的脉冲持续时间为357 fs输出脉冲的自相关轨迹, 插图是输出脉冲的时间序列图; (d)输出功率/脉冲能量随着输入功率的变化

    Fig. 5.  Mode-locking characteristics at 1.5 μm: (a) Mode-locking optical spectrum; (b) RF spectrum at a fundamental frequency of 19.0 MHz with 10 Hz resolution; the inset shows the RF spectrum of 100 MHz span; (c) autocorrelation trace for an output pulse with a pulse duration of 357 fs with sech2 fit; the inset is the oscilloscope trace of the output pulse train; (d) relationship between the input power and laser output power/pulse energy.

    表 1  基于铋SA不同锁模激光器的比较

    Table 1.  Comparison of different mode-locked lasers based on Bi saturable absorbers.

    FabricationIntegration methodλc/nmSNR/dBPpump/Pave/mWE/nJτ/fsαs/%来源
    LPEMicrofiber1559.1855542/1.150.136522.03Ref. [28]
    LPEMicrofiber1034.445238/8.35302502.2Ref. [29]
    LPEMicrofiber156155350/5.61935.6Ref. [30]
    LPEGold mirror20302000/1106.6978Ref. [31]
    LPEMicrofiber1557.525—/122.1621.52.4Ref. [32]
    LPEMicrofiber153156.54314/1.30.3513002.5Ref. [33]
    MSDMicrofiber156384280/45.42.3935714This work
    下载: 导出CSV
  • [1]

    Woodward R I, Kelleher E J R 2015 Appl. Sci. 5 1440Google Scholar

    [2]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar

    [3]

    Lagatsky A A, Fusari F, Calvez S, Kurilchik S V, Kisel V E, Kuleshov N V, Dawson M D, Brown C T A, Sibbett W 2010 Opt. Lett. 35 172Google Scholar

    [4]

    Popa D, Sun Z, Torrisi F, Hasan T, Wang F, Ferrari A C 2010 Appl. Phys. Lett. 97 203106Google Scholar

    [5]

    Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K, Yeom D I 2016 Opt. Express 24 14152Google Scholar

    [6]

    Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P 2011 Nano Res. 4 297Google Scholar

    [7]

    Li J, Luo H, Wang L, Zhao C, Zhang H, Li H, Liu Y 2015 Opt. Lett. 40 3659Google Scholar

    [8]

    Yan P, Jiang Z, Chen H, Yin J, Lai J, Wang J, He T, Yang J 2018 Opt. Lett. 43 4417Google Scholar

    [9]

    Jiang Z, Li J, Chen H, Wang J, Zhang W, Yan P 2018 Opt. Commun. 406 44Google Scholar

    [10]

    Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J 2015 Photonics Res. 3 A79Google Scholar

    [11]

    Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H, Zhao J 2016 Small 12 1489Google Scholar

    [12]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2018 Photonics Res. 6 535Google Scholar

    [13]

    Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C, Zhang H 2015 Opt. Express 23 20030Google Scholar

    [14]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar

    [15]

    Qin Z, Xie G, Zhao C, Wen S, Yuan P, Qian L 2016 Opt. Lett. 41 56Google Scholar

    [16]

    Song Y W, Jang S Y, Han W S, Bae M K 2010 Appl. Phys. Lett. 96 051122Google Scholar

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Mater. Express 5 2884Google Scholar

    [18]

    Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar

    [19]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [20]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mater. Interfaces 7 11490Google Scholar

    [21]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [22]

    Zhao M, Zhang X, Li L 2015 Sci. Rep. 5 16108Google Scholar

    [23]

    Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G, Fiori G 2016 Nat. Commun. 7 12585Google Scholar

    [24]

    Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J, Zamora F 2016 Adv. Mater. 28 6515Google Scholar

    [25]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y, Zeng H 2016 Nat. Commun. 7 13352Google Scholar

    [26]

    Jiang Z, Chen H, Li J, Yin J, Wang J, Yan P 2017 Appl. Phys. Express 10 122702Google Scholar

    [27]

    Haro-Poniatowski E, Jouanne M, Morhange J F, Kanehisa M, Serna R, Afonso C N 1999 Phys. Rev. B 60 10080Google Scholar

    [28]

    Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [29]

    Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H 2018 Nanoscale 10 17617Google Scholar

    [30]

    Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H, Zhang F, Ge Y, Zhang H 2018 Opt. Express 26 22750Google Scholar

    [31]

    Yang Q, Liu R, Huang C, Huang Y, Gao L, Sun B, Huang Z, Zhang L, Hu C, Zhang Z, Sun C, Wang Q, Tang Y, Zhang H 2018 Nanoscale 10 21106Google Scholar

    [32]

    Wang C, Wang L, Li X, Luo W, Feng T, Zhang Y, Guo P, Ge Y 2019 Nanotechnology 30 025204

    [33]

    Guo P, Li X, Chai T, Feng T, Ge Y, Song Y, Wang Y 2019 Nanotechnology 30 354002Google Scholar

  • [1] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展. 物理学报, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [2] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [3] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [4] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [5] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [6] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [7] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [8] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [9] 熊水东, 徐攀, 马明祥, 胡正良, 胡永明. 掺铒光纤环形激光器中饱和吸收光栅瞬态特性引发跳模的实验研究. 物理学报, 2014, 63(13): 134206. doi: 10.7498/aps.63.134206
    [10] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [11] 李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林. 铋的固相及液相多相状态方程研究. 物理学报, 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [12] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [13] 谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔. 反向碰撞法测量Bi的低压Hugoniot数据. 物理学报, 2011, 60(10): 106401. doi: 10.7498/aps.60.106401
    [14] 周朋, 苏良碧, 李红军, 喻军, 郑丽和, 杨秋红, 徐军. 掺铋BaF2晶体的制备及其近红外发光研究. 物理学报, 2010, 59(4): 2827-2830. doi: 10.7498/aps.59.2827
    [15] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [16] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [17] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [18] 柴 路, 颜 石, 薛迎红, 刘庆文, 葛文琦, 王清月, 苏良碧, 徐晓东, 赵广军, 徐 军. 镱、钠共掺的氟化钙晶体在1050nm的可饱和吸收作用. 物理学报, 2008, 57(5): 2966-2970. doi: 10.7498/aps.57.2966
    [19] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [20] 吕昌贵, 崔一平, 王著元, 恽斌峰. 光纤布拉格光栅法布里-珀罗腔纵模特性研究. 物理学报, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
计量
  • 文章访问数:  8982
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-02-15
  • 刊出日期:  2020-05-05

/

返回文章
返回