搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铋的固相及液相多相状态方程研究

李英华 常敬臻 李雪梅 俞宇颖 戴程达 张林

引用本文:
Citation:

铋的固相及液相多相状态方程研究

李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林

Multiphase equation of states of solid and liquid phases for bismuth

Li Ying-Hua, Chang Jing-Zhen, Li Xue-Mei, Yu Yu-Ying, Dai Cheng-Da, Zhang Lin
PDF
导出引用
  • 铋在高温高压下存在一系列复杂相结构,相变伴随着密度、内能等物理性质的改变. 采用半经验三项式Helmholtz自由能表达式,构建了铋的五个固相及液相的多相状态方程, 其中离子热振动自由能计算基于经典平均场理论给出的平均场势函数模型开展. 研究结果表明,状态方程计算给出的铋的相图、等温压缩线、液相的温度-密度曲线以及 冲击Hugoniot线等均与实验测量符合较好,故可认为本文构建的铋的多相状态方程具有良好的参数 合理性以及模型适用性.
    Element bismuth (Bi) will experience complex phase transitions under high temperature and high pressure, which means significant changes in physical properties, such as density, energy, etc. Multiphase equations of states (EOSs) of both solid and liquid phases for Bi are presented. The EOSs are based on the three-term expression for Helmholtz free energy, where the ion vibration free energy is evaluated from the mean field potential model we recently proposed. The calculated results show that our multiphase EOSs can well reproduce the experimental data, including phase diagram, isotherms of solid phases, density measurements of liquid phase and shock-wave compression data, which proves the rationality of the parameter values and the universal nature of this model.
    • 基金项目: 中国工程物理研究院科学与技术发展基金(批准号: 2011B0101002, 2010B0101002)和冲击波与爆轰波物理重点实验室基金(批准号: 9140C6701021102)资助的课题.
    • Funds: Project supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics (Grant Nos. 2011B0101002, 2010B0101002) and the Foundation of National Key Laboratory for Shock Wave and Detonation Physics, China (Grant No. 9140C6701021102).
    [1]

    Greeff C W 2005 Modelling Simul. Mater. Sci. Eng. 13 1015

    [2]

    Pecker S, Eliezer S, Fisher D, Henis Z, Zinamon Z 2005 J. Appl. Phys. 98 043516

    [3]

    Wang Y, Li L 2000 Phys. Rev. B 62 196

    [4]

    Zhang L, Li Y H, Yu Y Y, Li X M, Ma Y, Gu C G, Dai C D, Cai L C 2011 Physica B 406 4163

    [5]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [6]

    Bundy F P 1958 Phys. Rev. 110 314

    [7]

    Homan C G 1975 J. Phys. Chem. Solids 36 1249

    [8]

    Tonkov E Yu 1992 High Pressure Transformations: A Handbook (1st Ed.) (London: Taylor-Francis) p109

    [9]

    Aoki K, Fujiwara S, Kusakabe M 1982 J. Phys. Soc. Japan 51 3286

    [10]

    Young D A 1991 Phase Diagrams of Elements (1st Ed.) (Berkeley: University of California Press)

    [11]

    Akahama Y, Kawamura H, Singh A K 2002 J. Appl. Phys. 92 5892

    [12]

    Yoneda A, Endo S 1980 J. Appl. Phys. 51 3216

    [13]

    Chen J H, Iwasaki H, Kikegawa T, Yaoita K, Tsuji K 1994 High Pressure Science and Technology-1993 Colorado Springs, USA June 28-July 2, 1994 p421

    [14]

    Chen J H, Iwasaki H, Kikegawa T 1996 High Press. Res. 15 143

    [15]

    Gschneidner Jr K A 1964 Solid State Phys. 16 275

    [16]

    Marsh S P 1980 LASL Shock Hugoniot Data (1st Ed.) (Berkeley: California University Press) p23

    [17]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese) [谭叶, 俞宇颖, 戴诚达,谭华,王青松,王翔 2011 物理学报 60 106401]

    [18]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [19]

    Cox G A 2007 Shock Compression of Condensed Matter Waikoloa, June 24-29, 2007 p151

    [20]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [21]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [22]

    Dugdale J S, MacDonald D K C 1953 Phys. Rev. 89 832

    [23]

    Kittel C 2004 Introduction to Solid State Physics (8th Ed.) (New York: John Wiley and Sons) p131

    [24]

    Degtyareva O, Mcmahon M I, Nelmes R J 2004 High Pressure Res. 24 319

    [25]

    Hultgren R, Desai P D, Hawkins D T, Gleiser M, Kelley K K 1973 Selected Values of the Thermodynamic Properties of Binary Alloys (1st Ed.) (Ohio: ASM Metals Park) p41

    [26]

    Klement Jr W, Jayaraman A, Kennedy G C 1963 Phys. Rev. 131 1632

    [27]

    Bridegman P W 1935 Phys. Rev. 48 893

    [28]

    Peerdeman S A G, Trappeniers N J, Schouten J A 1980 High Temp. High Pressures 12 67

    [29]

    Chen J H, Kikegawa T, Shimomura O, Iwasaki H 1997 J. Synch. Rad. 4 21

    [30]

    Degtyareva V F 2000 Phys. Rev. B 62 9

    [31]

    Trunin R F, Zhernokletov M V, Kuznetsov N F, Shutov V V 1995 High Temp. 33 220

    [32]

    Donohue J 1982 The Structures of the Elements (1st Ed.) (Florida: Robert E. Krieger Publishing Company)

    [33]

    Greenberg Y, Yahel E, Caspi E N, Benmore C, Beuneu B, Dariel M P, Makov G 2009 Euro. Phys. Lett. 86 36004

    [34]

    Alchagirov B B, Mozgovoi A G, Shamparov T M 2004 High Temp. 42 493

    [35]

    Li J, Zhou X M, Li J B, Li S N, Zhu W J, Wang X, Jing F Q 2007 Acta Phys. Sin. 56 6557 (in Chinese) [李俊, 周显明, 李加波, 李赛男, 祝文军, 王翔, 经福谦 2007 物理学报 56 6557]

  • [1]

    Greeff C W 2005 Modelling Simul. Mater. Sci. Eng. 13 1015

    [2]

    Pecker S, Eliezer S, Fisher D, Henis Z, Zinamon Z 2005 J. Appl. Phys. 98 043516

    [3]

    Wang Y, Li L 2000 Phys. Rev. B 62 196

    [4]

    Zhang L, Li Y H, Yu Y Y, Li X M, Ma Y, Gu C G, Dai C D, Cai L C 2011 Physica B 406 4163

    [5]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [6]

    Bundy F P 1958 Phys. Rev. 110 314

    [7]

    Homan C G 1975 J. Phys. Chem. Solids 36 1249

    [8]

    Tonkov E Yu 1992 High Pressure Transformations: A Handbook (1st Ed.) (London: Taylor-Francis) p109

    [9]

    Aoki K, Fujiwara S, Kusakabe M 1982 J. Phys. Soc. Japan 51 3286

    [10]

    Young D A 1991 Phase Diagrams of Elements (1st Ed.) (Berkeley: University of California Press)

    [11]

    Akahama Y, Kawamura H, Singh A K 2002 J. Appl. Phys. 92 5892

    [12]

    Yoneda A, Endo S 1980 J. Appl. Phys. 51 3216

    [13]

    Chen J H, Iwasaki H, Kikegawa T, Yaoita K, Tsuji K 1994 High Pressure Science and Technology-1993 Colorado Springs, USA June 28-July 2, 1994 p421

    [14]

    Chen J H, Iwasaki H, Kikegawa T 1996 High Press. Res. 15 143

    [15]

    Gschneidner Jr K A 1964 Solid State Phys. 16 275

    [16]

    Marsh S P 1980 LASL Shock Hugoniot Data (1st Ed.) (Berkeley: California University Press) p23

    [17]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese) [谭叶, 俞宇颖, 戴诚达,谭华,王青松,王翔 2011 物理学报 60 106401]

    [18]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [19]

    Cox G A 2007 Shock Compression of Condensed Matter Waikoloa, June 24-29, 2007 p151

    [20]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [21]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [22]

    Dugdale J S, MacDonald D K C 1953 Phys. Rev. 89 832

    [23]

    Kittel C 2004 Introduction to Solid State Physics (8th Ed.) (New York: John Wiley and Sons) p131

    [24]

    Degtyareva O, Mcmahon M I, Nelmes R J 2004 High Pressure Res. 24 319

    [25]

    Hultgren R, Desai P D, Hawkins D T, Gleiser M, Kelley K K 1973 Selected Values of the Thermodynamic Properties of Binary Alloys (1st Ed.) (Ohio: ASM Metals Park) p41

    [26]

    Klement Jr W, Jayaraman A, Kennedy G C 1963 Phys. Rev. 131 1632

    [27]

    Bridegman P W 1935 Phys. Rev. 48 893

    [28]

    Peerdeman S A G, Trappeniers N J, Schouten J A 1980 High Temp. High Pressures 12 67

    [29]

    Chen J H, Kikegawa T, Shimomura O, Iwasaki H 1997 J. Synch. Rad. 4 21

    [30]

    Degtyareva V F 2000 Phys. Rev. B 62 9

    [31]

    Trunin R F, Zhernokletov M V, Kuznetsov N F, Shutov V V 1995 High Temp. 33 220

    [32]

    Donohue J 1982 The Structures of the Elements (1st Ed.) (Florida: Robert E. Krieger Publishing Company)

    [33]

    Greenberg Y, Yahel E, Caspi E N, Benmore C, Beuneu B, Dariel M P, Makov G 2009 Euro. Phys. Lett. 86 36004

    [34]

    Alchagirov B B, Mozgovoi A G, Shamparov T M 2004 High Temp. 42 493

    [35]

    Li J, Zhou X M, Li J B, Li S N, Zhu W J, Wang X, Jing F Q 2007 Acta Phys. Sin. 56 6557 (in Chinese) [李俊, 周显明, 李加波, 李赛男, 祝文军, 王翔, 经福谦 2007 物理学报 56 6557]

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 白刚, 林翠, 刘端生, 许杰, 李卫, 高存法. 取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能. 物理学报, 2021, 70(12): 127701. doi: 10.7498/aps.70.20202164
    [5] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [6] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [7] 张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 基于Helmholtz自由能模型的聚乙烯的完全物态方程. 物理学报, 2017, 66(5): 056501. doi: 10.7498/aps.66.056501
    [8] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [9] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定. 物理学报, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [10] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [11] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [12] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [13] 郭灿, 王志军, 王锦程, 郭耀麟, 唐赛. 直接相关函数对双模晶体相场模型相图的影响. 物理学报, 2013, 62(10): 108104. doi: 10.7498/aps.62.108104
    [14] 孙春峰. 镶嵌正方晶格上Gauss模型的相图. 物理学报, 2012, 61(8): 086802. doi: 10.7498/aps.61.086802
    [15] 白克钊, 邝华, 刘慕仁, 孔令江. 开放边界条件下平面环行交叉路口交通流的相图研究. 物理学报, 2010, 59(9): 5990-5995. doi: 10.7498/aps.59.5990
    [16] 李启朗, 孙晓燕, 汪秉宏, 刘慕仁. 低速十字路口交通流模型相图. 物理学报, 2010, 59(9): 5996-6002. doi: 10.7498/aps.59.5996
    [17] 周朋, 苏良碧, 李红军, 喻军, 郑丽和, 杨秋红, 徐军. 掺铋BaF2晶体的制备及其近红外发光研究. 物理学报, 2010, 59(4): 2827-2830. doi: 10.7498/aps.59.2827
    [18] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [19] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [20] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
计量
  • 文章访问数:  6679
  • PDF下载量:  536
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-10
  • 修回日期:  2012-04-13
  • 刊出日期:  2012-10-05

/

返回文章
返回