搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Helmholtz自由能模型的聚乙烯的完全物态方程

张旭平 王桂吉 罗斌强 谭福利 赵剑衡 孙承纬 刘仓理

引用本文:
Citation:

基于Helmholtz自由能模型的聚乙烯的完全物态方程

张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理

A complete equation of state for polyethylene based on Helmholtz free energy

Zhang Xu-Ping, Wang Gui-Ji, Luo Bin-Qiang, Tan Fu-Li, Zhao Jian-Heng, Sun Cheng-Wei, Liu Cang-Li
PDF
导出引用
  • 基于Helmholtz自由能建立了聚乙烯的完全物态方程,通过该模型计算获得了聚乙烯的150 GPa压力范围内的冲击Hugoniot关系、冲击波温度-压力关系,计算结果与已有实验结果和分子动力学计算结果均符合较好,表明构建的物态方程对描述聚乙烯离解相变压力150 GPa内的热力学量具有很好的适用性.
    Polyethylene (PE) is an important kind of plastic, which plays a significant role as the shell material of the fuel capsule, light weight structural element subjected to intense mechanical impact and explosion load. And it is well accepted that semi-empirical three-term equation of state (EOS) is one of the most widely used EOSs in practical work. Therefore, studies of semi-empirical three-term EOS of PE are significant for accurately predicting and analyzing the physical processes and experimental results under high pressure compression. A semi-empirical three-term complete EOS of PE based on the model of Helmholtz free energy is established in this work. According to the EOS model, the Helmholtz free energy is composed of cold energy, thermal contribution of atoms and thermal excitation of electrons. The cold energy is calculated by using the Mie potential. The optical frequency branch of atomic vibration and the thermal contribution of electrons are neglected in the calculation at temperatures below 104 K. The parameters of Helmholtz free energy are calculated by using the shock Hugoniot data and thermal parameters at ambient state. And then, the application pressure range and reliability of the semi-empirical three-term EOS of PE are evaluated. Shock Hugoniot, shock wave temperature and Grneisen coefficient of PE are deduced from the EOS. The results show that shock Hugoniot and shock wave temperature are consistent well with the experimental data and the first-principle calculation in a pressure range of 150 GPa. Because the specific volume of PE does not change obviously in the melting and chain dissociation process, the assumption of linear Hugoniot relation of PE is valid for calculating the cold energy parameters. The calculation results deviate from the experimental results at about 150 GPa while the compression lasts up to the chemical bond dissociation pressure of PE. In addition, the value of buck modulus and its derivative with respect to pressure at zero pressure and temperature depend strongly on Hugoniot parameters. Therefore, the parameter of Helmholtz free energy in this work is only valid for compression. In conclusion, the Helmholtz free energy model and parameters can well reproduce the experimental data and reasonably describe the thermodynamic state of PE at its dissociation pressure. Moreover, it should be pointed out that a more refined model of phase transition and thermal contribution of atoms and electrons should be considered when extrapolated to higher pressure.
      通信作者: 赵剑衡, jianh_zhao@caep.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11327803,11272295,11502252,11302203)资助的课题.
      Corresponding author: Zhao Jian-Heng, jianh_zhao@caep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11327803, 11272295, 11502252, 11302203).
    [1]

    Millett J C F, Bourne N K 2004J.Phys.D:Appl.Phys. 37 2901

    [2]

    Bourne N K, Millett J C F, Goveas S G 2007J.Phys.D:Appl.Phys. 40 5714

    [3]

    Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010Phys.Plasmas 17 056307

    [4]

    Barrios M A, Boehly T R, Hicks D G, Fratanduono D E, Eggert J H, Collins G W, Meyerhofer D D 2012J.Appl.Phys. 111 093515

    [5]

    Marsh S P 1980LASL Shock Hugoniot Data(California:University of California Press) pp439-442

    [6]

    Nellis W J, Ree F H, Traintor R J, Mitchell A C, Boslough M B 1984J.Chem.Phys. 80 2789

    [7]

    Huang X G, Fu S Z, Shu H, Ye J J, Wu J, Xie Z Y, Fang Z H, Jia G, Luo P Q, Long T, He J H, Gu Y, Wang S J 2010Acta Phys.Sin. 59 6394(in Chinese)[黄秀光, 傅思祖, 舒桦, 叶君建, 吴江, 谢志勇, 方智恒, 贾果, 罗平庆, 龙滔, 何钜华, 顾援, 王世绩2010物理学报59 6394]

    [8]

    Gu Y J, Chen Q F, Cai L C, Chen Z Y, Zhen J 2009Chin.Phys.Lett. 26 085101

    [9]

    Fortov V E, Lomonosov I V 2010Shock Waves 20 53

    [10]

    Pastine D J 1968J.Chem.Phys. 49 3012

    [11]

    Dowell F 1982LANL Tech.Rep. 9564 11

    [12]

    Mattsson T R, Lane J M D, Cochrane K R, Desjarlais M P, Thompson A P, Pierce F, Grest G S 2010Phys.Rev.B 81 054103

    [13]

    Chantawansri T L, Sirk T W, Byrd E F C, Andzelm J W, Rice B M 2012J.Chem.Phys. 137 204901

    [14]

    Root S, Haill T A, Lane J M D, Thompson A P, Grest G S, Schroen D G, Mattsson T R 2013J.Appl.Phys. 114 103502

    [15]

    Yu J D, Li P, Wang W Q, Wu Q 2014Acta Phys.Sin. 63 116401(in Chinese)[于继东, 李平, 王文强, 吴强2014物理学报63 116401]

    [16]

    Li Y H, Chang J Z, Li X M, Yu Y Y, Dai C D, Zhang L 2012Acta Phys.Sin. 61 206203(in Chinese)[李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林2012物理学报61 206203]

    [17]

    Xu S X, Zhang W X 1986Introduction to Practical Equation of State(Beijing:Higher Education Press) p249(in Chinese)[徐锡申, 张万箱1986实用物态方程理论导引(北京:高等教育出版社)第249页]

    [18]

    Zhang L, Li Y H, Yu Y Y, Li X M, Ma Y, Gu C G, Dai C D, Cai L C 2011Physica B 406 4163

    [19]

    Khishchenko K V, Lomonosov I V, Fortov V E 1998High Temperatures-High Pressure 30 373

    [20]

    Bushman A V, Lomonosov I V, Fortov V E, Khishchenko K V, Zhernokletov M V, Sutulov Y N 1996Sov.Phys.JETP 82 895

    [21]

    Tang W H, Zhang R Q 2008Introduction of Theory and Computation of Equations of State(Beijing:Higher Education Press) p224(in Chinese)[汤文辉, 张若棋2008物态方程理论及计算概述(北京:高等教育出版社)第224页]

    [22]

    Wu Q, Jing F Q, Li X Z 2005Chin.J.High Pressure Phys. 19 97(in Chinese)[吴强, 经福谦, 李欣竹2005高压物理学报19 97]

    [23]

    Wunderlich B 1962J.Chem.Phys. 37 1207

    [24]

    Jing F Q 1999Introduction to Experimental Equation of State(Beijing:Science Press) p372(in Chinese)[经福谦1999实验物态方程导引(北京:科学出版社)第372页]

  • [1]

    Millett J C F, Bourne N K 2004J.Phys.D:Appl.Phys. 37 2901

    [2]

    Bourne N K, Millett J C F, Goveas S G 2007J.Phys.D:Appl.Phys. 40 5714

    [3]

    Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010Phys.Plasmas 17 056307

    [4]

    Barrios M A, Boehly T R, Hicks D G, Fratanduono D E, Eggert J H, Collins G W, Meyerhofer D D 2012J.Appl.Phys. 111 093515

    [5]

    Marsh S P 1980LASL Shock Hugoniot Data(California:University of California Press) pp439-442

    [6]

    Nellis W J, Ree F H, Traintor R J, Mitchell A C, Boslough M B 1984J.Chem.Phys. 80 2789

    [7]

    Huang X G, Fu S Z, Shu H, Ye J J, Wu J, Xie Z Y, Fang Z H, Jia G, Luo P Q, Long T, He J H, Gu Y, Wang S J 2010Acta Phys.Sin. 59 6394(in Chinese)[黄秀光, 傅思祖, 舒桦, 叶君建, 吴江, 谢志勇, 方智恒, 贾果, 罗平庆, 龙滔, 何钜华, 顾援, 王世绩2010物理学报59 6394]

    [8]

    Gu Y J, Chen Q F, Cai L C, Chen Z Y, Zhen J 2009Chin.Phys.Lett. 26 085101

    [9]

    Fortov V E, Lomonosov I V 2010Shock Waves 20 53

    [10]

    Pastine D J 1968J.Chem.Phys. 49 3012

    [11]

    Dowell F 1982LANL Tech.Rep. 9564 11

    [12]

    Mattsson T R, Lane J M D, Cochrane K R, Desjarlais M P, Thompson A P, Pierce F, Grest G S 2010Phys.Rev.B 81 054103

    [13]

    Chantawansri T L, Sirk T W, Byrd E F C, Andzelm J W, Rice B M 2012J.Chem.Phys. 137 204901

    [14]

    Root S, Haill T A, Lane J M D, Thompson A P, Grest G S, Schroen D G, Mattsson T R 2013J.Appl.Phys. 114 103502

    [15]

    Yu J D, Li P, Wang W Q, Wu Q 2014Acta Phys.Sin. 63 116401(in Chinese)[于继东, 李平, 王文强, 吴强2014物理学报63 116401]

    [16]

    Li Y H, Chang J Z, Li X M, Yu Y Y, Dai C D, Zhang L 2012Acta Phys.Sin. 61 206203(in Chinese)[李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林2012物理学报61 206203]

    [17]

    Xu S X, Zhang W X 1986Introduction to Practical Equation of State(Beijing:Higher Education Press) p249(in Chinese)[徐锡申, 张万箱1986实用物态方程理论导引(北京:高等教育出版社)第249页]

    [18]

    Zhang L, Li Y H, Yu Y Y, Li X M, Ma Y, Gu C G, Dai C D, Cai L C 2011Physica B 406 4163

    [19]

    Khishchenko K V, Lomonosov I V, Fortov V E 1998High Temperatures-High Pressure 30 373

    [20]

    Bushman A V, Lomonosov I V, Fortov V E, Khishchenko K V, Zhernokletov M V, Sutulov Y N 1996Sov.Phys.JETP 82 895

    [21]

    Tang W H, Zhang R Q 2008Introduction of Theory and Computation of Equations of State(Beijing:Higher Education Press) p224(in Chinese)[汤文辉, 张若棋2008物态方程理论及计算概述(北京:高等教育出版社)第224页]

    [22]

    Wu Q, Jing F Q, Li X Z 2005Chin.J.High Pressure Phys. 19 97(in Chinese)[吴强, 经福谦, 李欣竹2005高压物理学报19 97]

    [23]

    Wunderlich B 1962J.Chem.Phys. 37 1207

    [24]

    Jing F Q 1999Introduction to Experimental Equation of State(Beijing:Science Press) p372(in Chinese)[经福谦1999实验物态方程导引(北京:科学出版社)第372页]

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [3] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [4] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [5] 范小兵, 陈俊祥, 向士凯. 基于比热的完全物态方程. 物理学报, 2016, 65(23): 236401. doi: 10.7498/aps.65.236401
    [6] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [7] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定. 物理学报, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [8] 陈俊祥, 于继东, 李平, 贺红亮. Grneisen γ通用函数及完全物态方程. 物理学报, 2015, 64(8): 086401. doi: 10.7498/aps.64.086401
    [9] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [10] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [11] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [12] 黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣. 二硼化钛的高温高压制备及其物性. 物理学报, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [13] 李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林. 铋的固相及液相多相状态方程研究. 物理学报, 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [14] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [15] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响. 物理学报, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [16] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷. 物理学报, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [17] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究. 物理学报, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [18] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [19] 黄秀光, 傅思祖, 舒桦, 叶君建, 吴江, 谢志勇, 方智恒, 贾果, 罗平庆, 龙滔, 何钜华, 顾援, 王世绩. 聚乙烯冲击压缩特性实验研究. 物理学报, 2010, 59(9): 6394-6398. doi: 10.7498/aps.59.6394
    [20] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
计量
  • 文章访问数:  6013
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-15
  • 修回日期:  2016-12-07
  • 刊出日期:  2017-03-05

/

返回文章
返回