搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉曼频移的白宝石压腔无压标系统高温高压实验标定

蒋建军 李和平 代立东 胡海英 赵超帅

引用本文:
Citation:

基于拉曼频移的白宝石压腔无压标系统高温高压实验标定

蒋建军, 李和平, 代立东, 胡海英, 赵超帅

Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure

Jiang Jian-Jun, Li He-Ping, Dai Li-Dong, Hu Hai-Ying, Zhao Chao-Shuai
PDF
导出引用
  • 在高压实验科学中, 各类宝石压腔是最为常见的高压设备之一, 其样品腔中压力的精确标定是实验的关键. 目前, 人们主要通过加入红宝石等压标物质来进行定压, 但压标物质的加入会增加实验的装样难度, 改变样品腔中的物理化学环境, 甚至直接与实验样品发生反应, 从而对实验结果产生影响. 在0–6.3 GPa和300–573 K下, 利用共聚焦拉曼显微镜, 根据白宝石压砧砧面的ν12 拉曼频移与温度和压力的变化关系, 建立了一套适用于高温高压水热体系的无压标白宝石压腔系统. 实验结果表明: 白宝石砧面的ν12 峰随着压力的升高发生线性蓝移, 而随着温度升高则发生线性红移, 且温度和压力对拉曼频移的影响存在耦合效应. 利用本实验结果, 可在高温高压下根据白宝石砧面的拉曼频移计算出样品腔的压力P=(Δλ-0.01913×ΔT)/(1.9158-0.00105×ΔT), 在物理学、材料学和地球科学等领域具有重要应用.
    Gem anvil cell is on important tool in high pressure experimental research, and the key of its application is the accurate calibration of the pressure in sample chamber. To date, the pressure has been routinely calibrated by the extra gauge such as ruby. This may increase the difficulty in building a setup and changing the chemical environment, even chemical reaction happens with the sample, thereby degrading the experimental results. In this study, using the synthesized pale sapphire and the heatable Zha-Bassett type cell, the relationships between Raman shift of sapphire-anvil interface and the pressure, and also temperature in chamber are investigated by the confocal Raman microscope at 0-6.3 GPa and 300-573 K, which is used to establish a non-gauge sapphire anvil cell system. The result shows that the pressure induced Raman shift of sapphire anvil at room temperature is 1.6443 cm-1/GPa and the temperature induced shift at room pressure is -0.0198 cm-1/K. We fit the experimental data at simultaneous high temperature and high pressure (HTHP) and find that: ∂ν12/∂T=-0.01913-0.00105×P, ∂ν12/∂P=1.9158-0.00105×T. The effect between the pressure and temperature can be described by ∂ν12/∂P∂T=-0.00105. After this calibration: P=(Δλ-0.01913×ΔT)/(1.9158-0.00105×ΔT), the pressure in the sample chamber can be calculated by the Raman shift of the interface of anvil cell in the HTHP experiment, which can be directly used in hydro-thermal reaction system and has great importance in physics, material science and geoscience.
    • 基金项目: 中国科学院重大科研设备研制项目(批准号: YZ200720)、中国科学院百人计划项目、中国科学院地球化学研究所“135”项目和国家自然科学基金(批准号: 41474078, 41304068)资助的课题.
    • Funds: Project supported by the CAS Major Research Equipment Development Program (Grant No. YZ200720), Hundred Talents Program of CAS, the "135" Program of Institute of Geochemistry of CAS and the National Natural Science Foundation of China (Grant Nos. 41474078, 41304068).
    [1]

    Bassett W 2009 High Pressure Res. 29 163

    [2]

    Hu J Z, Tang R M, Xu J A 2005 Acta Phys. Sin. 29 1351 (in Chinese) [胡静竹, 唐汝明, 徐济安 2005 物理学报 29 1351]

    [3]

    Piermarini G 2008 Static Compression of Energetic Materials (Berlin: Springer) p7

    [4]

    Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773

    [5]

    Syassen K 2008 High Pressure Res. 28 75

    [6]

    Gao R, Li H P 2012 High Pressure Res. 32 176

    [7]

    Baonza V G, Taravillo M, Arencibia A, Caceres M, Nν12úñez J 2003 J. Raman Spectrosc. 34 264

    [8]

    Qu Q M, Zheng H F 2007 Chin. J. High Pressure Phys. 21 332 (in Chinese) [瞿清明, 郑海飞 2007 高压物理学报 21 332]

    [9]

    Fu Z Y, Liang P, Dong Q M, Shu H B, Xing S, Shen T, Tai B 2015 Acta Phys. Sin. 64 016102 (in Chinese) [傅重源, 梁培, 董前民, 舒海波, 邢淞, 沈涛, 邰博 2015 物理学报 64 016102]

    [10]

    Zhang R, Hu S 2004 The J. Supercrit. Fluid 29 185

    [11]

    Yuan R L, Shi E W, Xia C T, Wang B G, Zhong W Z 1996 Acta Phys. Sin. 45 2082 (in Chinese) [元如林, 施尔畏, 夏长泰, 王步国, 仲维卓 1996 物理学报 45 2082]

    [12]

    Zheng H F 2014 Experimental Techniques of DAC for High Temperature and Pressure Studies and Its Applications (Beijing: Science Press) p172 (in Chinese) [郑海飞 2014 金刚石压腔高温高压实验技术及其应用 (北京: 科学出版社) 第172页]

    [13]

    Richet P, Gillet P, Pierre A, Bouhifd M A, Daniel I, Fiquet G 1993 J. Appl. Phys. 74 5451

    [14]

    Xu J A, Huang E, Lin J F, Xu L Y 1995 Am. Mineral. 80 1157

    [15]

    Zha C S, Krasnicki S, Meng Y F, Yan C S, Lai J, Liang Q, Mao H K, Hemley R J 2009 High Pressure Res. 29 317

    [16]

    Klotz S, Chervin J C, Munsch P, Le Marchand G 2009 J. Phys. D: Appl. Phys. 42 075413

    [17]

    Mao H K, Xu J A, Bell P 1986 J. Geophys. Res. 91 4673

    [18]

    Iishi K 1978 Phys. Chem. Miner. 3 1

    [19]

    Porto S, Krishnan R 1967 J. Chem. Phys. 47 1009

    [20]

    Noguchi N, Abduriyim A, Shimizu I, Kamegata N, Odake S, Kagi H 2013 J. Raman. Spectrosc. 44 147

    [21]

    Schmidt C, Steele-MacInnis M, Watenphul A, Wilke M 2013 Am. Mineral. 98 6431

    [22]

    Datchi F, Dewaele A, Loubeyre P, Letoullec R, Le Godec Y, Canny B 2007 High Pressure Res. 27 447

  • [1]

    Bassett W 2009 High Pressure Res. 29 163

    [2]

    Hu J Z, Tang R M, Xu J A 2005 Acta Phys. Sin. 29 1351 (in Chinese) [胡静竹, 唐汝明, 徐济安 2005 物理学报 29 1351]

    [3]

    Piermarini G 2008 Static Compression of Energetic Materials (Berlin: Springer) p7

    [4]

    Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773

    [5]

    Syassen K 2008 High Pressure Res. 28 75

    [6]

    Gao R, Li H P 2012 High Pressure Res. 32 176

    [7]

    Baonza V G, Taravillo M, Arencibia A, Caceres M, Nν12úñez J 2003 J. Raman Spectrosc. 34 264

    [8]

    Qu Q M, Zheng H F 2007 Chin. J. High Pressure Phys. 21 332 (in Chinese) [瞿清明, 郑海飞 2007 高压物理学报 21 332]

    [9]

    Fu Z Y, Liang P, Dong Q M, Shu H B, Xing S, Shen T, Tai B 2015 Acta Phys. Sin. 64 016102 (in Chinese) [傅重源, 梁培, 董前民, 舒海波, 邢淞, 沈涛, 邰博 2015 物理学报 64 016102]

    [10]

    Zhang R, Hu S 2004 The J. Supercrit. Fluid 29 185

    [11]

    Yuan R L, Shi E W, Xia C T, Wang B G, Zhong W Z 1996 Acta Phys. Sin. 45 2082 (in Chinese) [元如林, 施尔畏, 夏长泰, 王步国, 仲维卓 1996 物理学报 45 2082]

    [12]

    Zheng H F 2014 Experimental Techniques of DAC for High Temperature and Pressure Studies and Its Applications (Beijing: Science Press) p172 (in Chinese) [郑海飞 2014 金刚石压腔高温高压实验技术及其应用 (北京: 科学出版社) 第172页]

    [13]

    Richet P, Gillet P, Pierre A, Bouhifd M A, Daniel I, Fiquet G 1993 J. Appl. Phys. 74 5451

    [14]

    Xu J A, Huang E, Lin J F, Xu L Y 1995 Am. Mineral. 80 1157

    [15]

    Zha C S, Krasnicki S, Meng Y F, Yan C S, Lai J, Liang Q, Mao H K, Hemley R J 2009 High Pressure Res. 29 317

    [16]

    Klotz S, Chervin J C, Munsch P, Le Marchand G 2009 J. Phys. D: Appl. Phys. 42 075413

    [17]

    Mao H K, Xu J A, Bell P 1986 J. Geophys. Res. 91 4673

    [18]

    Iishi K 1978 Phys. Chem. Miner. 3 1

    [19]

    Porto S, Krishnan R 1967 J. Chem. Phys. 47 1009

    [20]

    Noguchi N, Abduriyim A, Shimizu I, Kamegata N, Odake S, Kagi H 2013 J. Raman. Spectrosc. 44 147

    [21]

    Schmidt C, Steele-MacInnis M, Watenphul A, Wilke M 2013 Am. Mineral. 98 6431

    [22]

    Datchi F, Dewaele A, Loubeyre P, Letoullec R, Le Godec Y, Canny B 2007 High Pressure Res. 27 447

  • [1] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [2] 戴逸, 王文丹, 法志湘, 王路, 王菊, 梁策, 李星翰. 八面腔压机中一定尺寸的二级压砧上运行的最大组装. 物理学报, 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006
    [3] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [4] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏. 籽晶尺寸对宝石级金刚石单晶生长的影响. 物理学报, 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [5] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏. 降温工艺对宝石级金刚石单晶品质的影响. 物理学报, 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [6] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [7] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [8] 唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明. 一种以压力一维均匀分布为特征的长条形对顶压砧. 物理学报, 2016, 65(10): 100701. doi: 10.7498/aps.65.100701
    [9] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [10] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [11] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [12] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [13] 黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣. 二硼化钛的高温高压制备及其物性. 物理学报, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [14] 王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa. 物理学报, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [15] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究. 物理学报, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [16] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [17] 吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明. 滑块式六含八超高压实验装置及其压力温度标定. 物理学报, 2009, 58(10): 6852-6857. doi: 10.7498/aps.58.6852
    [18] 王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张 伟, 张 剑, 寇自力, 彭 放. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置. 物理学报, 2008, 57(9): 5429-5434. doi: 10.7498/aps.57.5429
    [19] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [20] 朱 骏, 毛翔宇, 陈小兵. Bi4-xLaxTi3O12-SrBi4Ti4O15,共生结构铁电材料拉曼光谱研究. 物理学报, 2004, 53(11): 3929-3933. doi: 10.7498/aps.53.3929
计量
  • 文章访问数:  3638
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-20
  • 修回日期:  2015-03-09
  • 刊出日期:  2015-07-05

基于拉曼频移的白宝石压腔无压标系统高温高压实验标定

  • 1. 中国科学院地球化学研究所, 中国科学院地球内部物质高温高压重点实验室, 贵阳 550002;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 中国科学院重大科研设备研制项目(批准号: YZ200720)、中国科学院百人计划项目、中国科学院地球化学研究所“135”项目和国家自然科学基金(批准号: 41474078, 41304068)资助的课题.

摘要: 在高压实验科学中, 各类宝石压腔是最为常见的高压设备之一, 其样品腔中压力的精确标定是实验的关键. 目前, 人们主要通过加入红宝石等压标物质来进行定压, 但压标物质的加入会增加实验的装样难度, 改变样品腔中的物理化学环境, 甚至直接与实验样品发生反应, 从而对实验结果产生影响. 在0–6.3 GPa和300–573 K下, 利用共聚焦拉曼显微镜, 根据白宝石压砧砧面的ν12 拉曼频移与温度和压力的变化关系, 建立了一套适用于高温高压水热体系的无压标白宝石压腔系统. 实验结果表明: 白宝石砧面的ν12 峰随着压力的升高发生线性蓝移, 而随着温度升高则发生线性红移, 且温度和压力对拉曼频移的影响存在耦合效应. 利用本实验结果, 可在高温高压下根据白宝石砧面的拉曼频移计算出样品腔的压力P=(Δλ-0.01913×ΔT)/(1.9158-0.00105×ΔT), 在物理学、材料学和地球科学等领域具有重要应用.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回