搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稠密流体氮高温高压相变及物态方程

田春玲 刘海燕 王彪 刘福生 甘云丹

引用本文:
Citation:

稠密流体氮高温高压相变及物态方程

田春玲, 刘海燕, 王彪, 刘福生, 甘云丹

Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure

Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan
PDF
HTML
导出引用
  • 氮的高温高压物态方程以及相图对于研究和制备高能量密度含能材料至关重要. 本文采用基于密度泛函理论的分子动力学模拟方法, 研究了液氮的高温高压行为, 给出 900—25000 K, 2—200 GPa区间流体氮的物态方程以及组分、相态变化. 在上述相空间, 观察到流体氮分子相-聚合物相以及聚合物-原子相的相变发生. 获得的液氮Hugoniot理论曲线与实验结果吻合较好, 发现30—60 GPa区间Hugoniot曲线的软化与分子-聚合物流体相的相变有关; 在60 GPa后Hugoniot曲线变陡峭与流体氮进入聚合物相区有关.
    Nitrogen is the main reaction and detonation product of energetic materials. Therefore, studying the equation of state and phase transition of nitrogen at high temperature and high pressure is very important in evaluating the energy characteristics of energetic materials, especially in designing a new-generation nitrogen-rich energetic materials. Using density functional molecular dynamics simulation method, we calculate the pressure, internal energy and chemical components of fluid nitrogen in a temperature range of 900–25000 K and a pressure range of 2–300 GPa. The negative changes of pressure with temperature on isochores are observed under the temperature and pressure conditions of 3000–10000 K and 20–80 GPa. As the temperature increases, the pressure drop is caused by the collapse of nitrogen molecules. This phenomenon is related to the phase transition from molecular fluid nitrogen to polymerized fluid nitrogen. The triple bond in the molecule breaks and a polymer forms, which is connected by single and double bonds with neighboring atom. We also study the equation of state along Hugoniot curve under impact loading. The obtained Hugoniot curve is in good agreement with the experimental results. It is found that the softening of the experimental curve in a range of 30–60 GPa is related to the decomposition of nitrogen molecules and the formation of polymeric nitrogen.
      通信作者: 甘云丹, ganyundan@163.com
    • 基金项目: 国家自然科学基金(批准号: 12072299)资助的课题.
      Corresponding author: Gan Yun-Dan, ganyundan@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12072299).
    [1]

    Ree R H 1984 J. Chem. Phys. 81 1251Google Scholar

    [2]

    Samartzis P C, Wodtke A M 2006 Int. Rev. Phys. Chem. 25 527Google Scholar

    [3]

    Christian R H, Duff R E, Yarger F L 1955 J. Chem. Phys. 23 2045Google Scholar

    [4]

    Mulder A, Michels J P J, Schouten J A 1996 J. Chem. Phys. 105 3235Google Scholar

    [5]

    Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419Google Scholar

    [6]

    Zahariev F, Hooper J, Alavi S, Zhang F, Woo T K 2007 Phys. Rev. B 75 140101Google Scholar

    [7]

    Pickard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar

    [8]

    Ma Y M, Oganov A R, Li Z W, Xie Y, Kotakoski J 2009 Phys. Rev. Lett. 102 065501Google Scholar

    [9]

    Wang X L, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Chen L 2012 Phys. Rev. Lett. 109 175502Google Scholar

    [10]

    Hirshberg B, Gerber R B, Krylovc A I 2014 Nat. Chem. 6 52Google Scholar

    [11]

    Li Y W, Feng X L, Liu H Y, Hao J 2018 Nat. Commun. 9 72Google Scholar

    [12]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [13]

    Tomasino D, Kim M, Smith J, Yoo C 2014 Phys. Rev. Lett. 113 205502Google Scholar

    [14]

    Ji C, Adeleke A A, Yang L, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K 2020 Sci. Adv. 6 eaba9206Google Scholar

    [15]

    Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001Google Scholar

    [16]

    Liu Y, Su H P, Niu C P, Wang X L, Zhang J R, Ge Z X, Li Y C 2020 Chin. Phys. B 29 106201Google Scholar

    [17]

    梁冬梅, 刘海燕, 甘云丹, 匡安龙, 田春玲 2021 科学通报 66 2908Google Scholar

    Liang D M, Liu H Y, Gan Y D, Kuang A L, Tian C L 2021 Chin. Sci. Bull. 66 2908Google Scholar

    [18]

    Liu S J, Zhao L, Yao M G, Miao MS, Liu B B 2020 Adv. Sci. 7 1902320Google Scholar

    [19]

    Dick R D 1970 J. Chem. Phys. 52 6021Google Scholar

    [20]

    Nellis W J, Holmes N C, Mitchell A C, Thiel M V 1980 J. Chem. Phys. 73 15Google Scholar

    [21]

    Nellis W J, Radousky H B, Hamilton D C, Mitchell A C, Holmes N C, Christianson K B, Thiel M V 1991 J. Chem. Phys. 94 2244Google Scholar

    [22]

    Akram M S, Fan Z N, Zhang M J, Liu Q J, Liu F S 2020 J. Appl. Phys. 128 225901Google Scholar

    [23]

    Ross M 1987 J. Chem. Phys. 86 7110Google Scholar

    [24]

    Nellis W J, Holmes N C, Mitchell A C, Thiel M 1984 Phys. Rev. Lett. 53 1661Google Scholar

    [25]

    Militzer B, Ceperley D M, Kress J D, Johnson J D, Collins L A, Mazevet S 2001 Phys. Rev. Lett. 87 275502Google Scholar

    [26]

    马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军 2017 物理学报 66 036401Google Scholar

    Ma G C, Zhang Q L, Song H Z, Li Q, Zhu X R, Meng X J 2017 Acta Phys. Sin. 66 036401Google Scholar

    [27]

    Driver K P, Militzer B 2016 Phys. Rev. B 93 064101Google Scholar

    [28]

    Zhao G, Wang H, Ding M C, Zhao X G, Wang H Y, Yan J L 2018 Phys. Rev. B 98 184205Google Scholar

    [29]

    Kress J, Mazevet S, Collins L A, Wood W 2000 Phys. Rev. B 63 024203Google Scholar

    [30]

    Boates B, Bonev S A 2009 Phys. Rev. Lett. 102 015701Google Scholar

    [31]

    Boates B, Bonev S A 2011 Phys. Rev. B 83 174114Google Scholar

    [32]

    Geng H Y, Wu Q, Marqués M, Ackland G J 2019 Phys. Rev. B 100 134109Google Scholar

    [33]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [36]

    Nose S C 1984 J. Chem. Phys. 81 511Google Scholar

    [37]

    Shan H, Yang Y, James A J, Sharp P R 1997 Science 275 1460Google Scholar

    [38]

    Steele B A, Oleynik I I 2016 Chem. Phys. Lett. 643 21Google Scholar

  • 图 1  1.75 g/cm3时流体氮的等容线 (a)压强-温度关系; (b) 内能-温度关系; (c)原子平均配位数随温度的变化; (d) 化学组分占比(Rn)与离解度(β)随温度的变化; (e) 径向分布函数图像; (f)—(h)不同温度下的原子分布抽样, 绿色原子代表氮分子组分, 玫色表示聚合物组分, 蓝色小球表示氮原子组分, 红色三角形代表液氮的Hugoniot状态点

    Fig. 1.  Fluid nitrogen at 1.75 g/cm3: (a) Temperature-dependence for pressure ; (b) temperature-dependence for internal energy; (c) temperature-dependence for coordination number of atoms; (d) temperature-dependence of chemical component ratio (Rn) and molecular dissociation degree (β) ; (e) pair correlation functions at temperatures of 7000, 10000 and 20000 K; (f)–(h) snapshots from MD simulations. Green atoms represent molecules, the red spheres show polymers and the blue indicate isolated atoms. The red triangle represent the Hugoniot point.

    图 2  3.00 g/cm3时流体氮的等容线 (a)压强-温度关系; (b) 内能-温度关系; (c)原子平均配位数随温度的变化; (d) 化学组分占比Rn 与离解度β随温度的变化; (e) 径向分布函数; (f)—(h) 不同温度下的模拟原胞原子的瞬态抽样

    Fig. 2.  Nitrogen isochore at 3.00 g/cm3: (a) Temperature-dependence for pressure ; (b) temperature-dependence for internal energy; (c) temperature-dependence for coordination number of atoms; (d) temperature-dependence of chemical component ratio (Rn) and molecular dissociation degree (β) ; (e) pair correlation functions at temperatures of 3000, 70000 and 20000 K; (f)–(h) snapshots from MD simulations at different temperatures.

    图 3  在不同的温度和密度下流体氮结构的价电荷密度 (a) 1.75 g/cm3, 2000 K; (b) 1.75 g/cm3, 20000 K; (c) 3.00 g/cm3, 7000 K; (d) 3.00 g/cm3, 20000 K

    Fig. 3.  Valance charge densities of fluid nitrogen at different temperatures and densities: (a) 1.75 g/cm3, 2000 K; (b) 1.75 g/cm3, 20000 K; (c) 3.00 g/cm3, 7000 K; (d) 3.00 g/cm3, 20000 K.

    图 4  液氮的Hugoniot物态方程的实验和理论结果比较 (a)压强-密度关系; (b)温度-压强关系

    Fig. 4.  Comparison between the experiments and calculations of Hugoniot equation of state for liquid nitrogen: (a) Pressure as a function of the final shock density; (b) shock temperature as a function of the pressure.

    图 5  液氮的Hugoniot冲击压缩点在不同等容线上的压强-温度相空间分布 (a) 2.02 g/cm3; (c) 2.40 g/cm3; (e) 2.75 g/cm3; 图(b), (d), (f)是与图(a), (c), (e)相对应的分子动力学模拟中原胞原子位置分布的的瞬态抽样. (g) 2.75 g/cm3下流体氮的组分

    Fig. 5.  Hugoniot points in P/T space at constant densities: (a) 2.02 g/cm3; (c) 2.40 g/cm3; (e) 2.75 g/cm3; (b), (d), (f) corresponding snapshots from MD simulations of panels (a), (c), (e). (g) Chemical components at 2.75 g/cm3.

    表 1  DFT-MD模拟得到的液氮冲击状态数据以及流体组分(初态ρ0 = 0.808 g/cm3, T0 = 77.6 K, E0 = –8.319 eV/atom)

    Table 1.  Calculated results for pressure and temperature and the chemical components along the Hugoniot curve from our DFT-MD simulations. The initial conditions are ρ0 = 0.808 g/cm3, T0 = 77.6 K, E0 = –8.319 eV/atom.

    ρ/
    (g·cm–3)
    P/GPaT/KDissociation degree
    ($ \beta $)
    Polymeric ratio
    ($ {R_{n \geqslant {\text{3}}}} $)
    Label number
    1.57.290000
    1.7516.32295001
    1.9224.1410900
    2.0232.561640.030.032
    2.2038.365820.140.12
    2.4044.169550.270.253
    2.5347.972460.370.35
    2.7556.583480.530.474
    2.9067.2103970.650.55
    3.00106.8195260.730.515
    下载: 导出CSV
  • [1]

    Ree R H 1984 J. Chem. Phys. 81 1251Google Scholar

    [2]

    Samartzis P C, Wodtke A M 2006 Int. Rev. Phys. Chem. 25 527Google Scholar

    [3]

    Christian R H, Duff R E, Yarger F L 1955 J. Chem. Phys. 23 2045Google Scholar

    [4]

    Mulder A, Michels J P J, Schouten J A 1996 J. Chem. Phys. 105 3235Google Scholar

    [5]

    Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419Google Scholar

    [6]

    Zahariev F, Hooper J, Alavi S, Zhang F, Woo T K 2007 Phys. Rev. B 75 140101Google Scholar

    [7]

    Pickard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar

    [8]

    Ma Y M, Oganov A R, Li Z W, Xie Y, Kotakoski J 2009 Phys. Rev. Lett. 102 065501Google Scholar

    [9]

    Wang X L, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Chen L 2012 Phys. Rev. Lett. 109 175502Google Scholar

    [10]

    Hirshberg B, Gerber R B, Krylovc A I 2014 Nat. Chem. 6 52Google Scholar

    [11]

    Li Y W, Feng X L, Liu H Y, Hao J 2018 Nat. Commun. 9 72Google Scholar

    [12]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [13]

    Tomasino D, Kim M, Smith J, Yoo C 2014 Phys. Rev. Lett. 113 205502Google Scholar

    [14]

    Ji C, Adeleke A A, Yang L, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K 2020 Sci. Adv. 6 eaba9206Google Scholar

    [15]

    Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001Google Scholar

    [16]

    Liu Y, Su H P, Niu C P, Wang X L, Zhang J R, Ge Z X, Li Y C 2020 Chin. Phys. B 29 106201Google Scholar

    [17]

    梁冬梅, 刘海燕, 甘云丹, 匡安龙, 田春玲 2021 科学通报 66 2908Google Scholar

    Liang D M, Liu H Y, Gan Y D, Kuang A L, Tian C L 2021 Chin. Sci. Bull. 66 2908Google Scholar

    [18]

    Liu S J, Zhao L, Yao M G, Miao MS, Liu B B 2020 Adv. Sci. 7 1902320Google Scholar

    [19]

    Dick R D 1970 J. Chem. Phys. 52 6021Google Scholar

    [20]

    Nellis W J, Holmes N C, Mitchell A C, Thiel M V 1980 J. Chem. Phys. 73 15Google Scholar

    [21]

    Nellis W J, Radousky H B, Hamilton D C, Mitchell A C, Holmes N C, Christianson K B, Thiel M V 1991 J. Chem. Phys. 94 2244Google Scholar

    [22]

    Akram M S, Fan Z N, Zhang M J, Liu Q J, Liu F S 2020 J. Appl. Phys. 128 225901Google Scholar

    [23]

    Ross M 1987 J. Chem. Phys. 86 7110Google Scholar

    [24]

    Nellis W J, Holmes N C, Mitchell A C, Thiel M 1984 Phys. Rev. Lett. 53 1661Google Scholar

    [25]

    Militzer B, Ceperley D M, Kress J D, Johnson J D, Collins L A, Mazevet S 2001 Phys. Rev. Lett. 87 275502Google Scholar

    [26]

    马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军 2017 物理学报 66 036401Google Scholar

    Ma G C, Zhang Q L, Song H Z, Li Q, Zhu X R, Meng X J 2017 Acta Phys. Sin. 66 036401Google Scholar

    [27]

    Driver K P, Militzer B 2016 Phys. Rev. B 93 064101Google Scholar

    [28]

    Zhao G, Wang H, Ding M C, Zhao X G, Wang H Y, Yan J L 2018 Phys. Rev. B 98 184205Google Scholar

    [29]

    Kress J, Mazevet S, Collins L A, Wood W 2000 Phys. Rev. B 63 024203Google Scholar

    [30]

    Boates B, Bonev S A 2009 Phys. Rev. Lett. 102 015701Google Scholar

    [31]

    Boates B, Bonev S A 2011 Phys. Rev. B 83 174114Google Scholar

    [32]

    Geng H Y, Wu Q, Marqués M, Ackland G J 2019 Phys. Rev. B 100 134109Google Scholar

    [33]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [36]

    Nose S C 1984 J. Chem. Phys. 81 511Google Scholar

    [37]

    Shan H, Yang Y, James A J, Sharp P R 1997 Science 275 1460Google Scholar

    [38]

    Steele B A, Oleynik I I 2016 Chem. Phys. Lett. 643 21Google Scholar

  • [1] 郭琳琳, 赵梓彤, 隋明宏, 王鹏, 刘冰冰. 限域条件下氮分子的高温高压诱导聚合. 物理学报, 2024, 73(8): 086102. doi: 10.7498/aps.73.20240173
    [2] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟. 物理学报, 2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
    [3] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究. 物理学报, 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [4] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [5] 武娜, 杨皎, 肖芬, 蔡灵仓, 田春玲. 固氪物态方程的关联量子化学计算. 物理学报, 2014, 63(14): 146102. doi: 10.7498/aps.63.146102
    [6] 卢志鹏, 祝文军, 卢铁城, 孟川民, 徐亮, 李绪海. 高温高压下过渡金属Ru的结构相变. 物理学报, 2013, 62(17): 176402. doi: 10.7498/aps.62.176402
    [7] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [8] 赵艳红, 刘海风, 张其黎. 高温高压下爆轰产物中不同种分子间的相互作用. 物理学报, 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [9] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究. 物理学报, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [10] 顾云军, 郑君, 陈志云, 陈其峰, 蔡灵仓. H2+He流体混合物在部分离解区的物态方程. 物理学报, 2010, 59(7): 4508-4513. doi: 10.7498/aps.59.4508
    [11] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [12] 张 颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城. 部分电离稠密氦等离子体物态方程的自洽变分计算. 物理学报, 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [13] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究. 物理学报, 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [14] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [15] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [16] 侯 永, 袁建民. 第一性原理对金的高压相变和零温物态方程的计算. 物理学报, 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
    [17] 王彩霞, 田杨萌, 姜 明, 程新路, 杨向东, 孟川民. 一种计算氩等离子物态方程的简单模型. 物理学报, 2006, 55(11): 5784-5789. doi: 10.7498/aps.55.5784
    [18] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [19] 李晓杰. 热膨胀型固体物态方程. 物理学报, 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
    [20] 耿华运, 吴强, 谭华. 热力学物态方程参数的统计力学表示. 物理学报, 2001, 50(7): 1334-1339. doi: 10.7498/aps.50.1334
计量
  • 文章访问数:  4887
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 修回日期:  2022-04-01
  • 上网日期:  2022-07-25
  • 刊出日期:  2022-08-05

/

返回文章
返回