搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压下过渡金属Ru的结构相变

卢志鹏 祝文军 卢铁城 孟川民 徐亮 李绪海

引用本文:
Citation:

高温高压下过渡金属Ru的结构相变

卢志鹏, 祝文军, 卢铁城, 孟川民, 徐亮, 李绪海

Structural phase transition of Ru at high pressure and temperature

Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Meng Chuan-Min, Xu Liang, Li Xu-Hai
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理和准简谐晶格动力学方法对Ru的六角密排 (hcp)、面心立方 (fcc)、体心四方 (bct) 和体心立方 (bcc) 结构的磁性、晶格结构稳定性和高温高压下的相变进行了系统的研究. 计算获得了各相结构的磁性基态及其稳定性范围, 结果表明: 零温下在计算的压力范围内, NM-hcp 结构是Ru最稳定的结构, 压力的单独作用下并没有相变的发生; NM-fcc结构是Ru的亚稳定结构, 而NM-bcc和FM-bct结构在动力学上并不稳定. 高温高压下Ru将发生从NM-hcp到NM-fcc结构的相变, 并给出了Ru的温度压力相图.
    The magnetism, stabilities and phase transition of Ru in hcp, fcc, bct and bcc structures are investigated with detailed first-principles calculations based on density-functional theory and quasiharmonic lattice dynamics approximation. Magnetic ground states and stability ranges of various phases are obtained. Calculated results indicate that the non-magnetic (NM)-hcp structure is the most stable in the entire pressure range at zero temperature, and the structural transition cannot be induced by pressure alone. NM-fcc structure is a metastable phase of bulk Ru, while both the NM-bcc and ferromagnetic (FM)-bct structures are dynamically unstable. At high pressure and temperature, a transformation from NM-hcp to NM-fcc structure will occur. Finally, the pressure-temperature phase diagram of Ru is presented.
    • 基金项目: 国家自然科学基金(批准号: 11102194);冲击波物理与爆轰物理国防科技重点实验室基金(批准号: 9140C670201110C6704, 9140C6702011103);中国工程物理研究院科学技术发展基金(批准号: 2012B0101002)和中国工程物理研究院双百人才基金(批准号: 032904)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11102194), the Science and Technology Foundation of State Key Laboratory of Shock Wave and Detonation Physics (Grant Nos. 9140C670201110C6704, 9140C6702011103), the Science and Techonology Development Foundation of China Academy of Engineering Physics (Grant No. 2012B0101002), the Fundation of Double Hundred Talents of China Academy of Engineering Physics (Grant No. 032904).
    [1]

    Cazorla C, Alfé D, Gillan M J 2008 Phys. Rev. B 77 224103

    [2]

    Duthie J C, Pettifor D G 1977 Phys. Rev. Lett. 38 564

    [3]

    Friedel J 1969 The Physics of Metals (London: Cambridge University)

    [4]

    Heine V 1967 Phys. Rev. 153 673

    [5]

    Pettifor D G 1972 Metallurgical Chemistry (London: Her Majesty’s Stationery Office)

    [6]

    Souvatzis P, Eriksson O 2008 Phys. Rev. B 77 024110

    [7]

    Zheng-Johansson J X, Eriksson O, Johansson B 1999 Phys. Rev. B 69 6131

    [8]

    Cazorla C, Gillan M J, Taioli S, Alfé D 2007 J. Chem. Phys. 126 194502

    [9]

    Taioli S, Cazorla C, Gillan M J, Alfé D 2007 Phys. Rev. B 75 214103

    [10]

    Ross M, Errandonea D, Boehler R 2007 Phys. Rev. B 76 184118

    [11]

    Errandonea D 2005 Physica B (Amsterdam) 357 356

    [12]

    Belonoshko A B, Simak S I, Kochetov A E, Johansson B, Burakovsky L, Preston D L 2004 Phys. Rev. Lett. 92 195701

    [13]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502

    [14]

    Hebbache M, Zemzemi M 2004 Phys. Rev. B 70 224107

    [15]

    Liu C M, Cheng Y, Zhu B, Ji G F 2011 Physica B 406 2110

    [16]

    Occelli F, Farber D L, Badro J, Aracne C M, Teter D M, Hanfland M, Canny B, Couzinet B 2004 Phys. Rev. Lett. 93 095502

    [17]

    Shiiki K, Hio O 1997 Jpn. J. Appl. Phys. 36 7360

    [18]

    Watanabe S, Komine T, Kai T, Shiiki K 2000 J. Magn. Magn. Mater. 220 277

    [19]

    Schönecker S, Richter M, Koepernik K, Eschrig H 2012 Phys. Rev. B 85 024407

    [20]

    Wang W C, Shen Y X, Li J H, Liu B X 2006 J. Phys.: Condens. Matter 18 9911

    [21]

    Wang W C, Kong Y, He X, Liu B X 2006 Appl. Phys. Lett. 89 262511

    [22]

    Herper H C, Hoffmann E, Entel P 1999 Phys. Rev. B 60 3839

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [27]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [29]

    Alfé D 2009 Comput. Phys. Commun 180 2622

    [30]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [31]

    Mermin N D 1965 Phys. Rev. 137 A1441

    [32]

    Cazorla C, Gillan M J 2007 J. Chem. Phys. 126 194502

    [33]

    Gunnarsson O 1976 J. Phys. F 6 587

    [34]

    Janak J F 1977 Phys. Rev. B 16 255

    [35]

    Cynn H, Klepeis J E, Yoo C, Young D A 2002 Phys. Rev. Lett. 88 135701

    [36]

    Kittel C 1996 Introduction to solid state physics (New York: Wiley)

    [37]

    Vinet P, Ferrante J, Smith J R, Rose J H 1986 J. Phys. C: Solid State Phys. 19 L467

    [38]

    Vinet P, Rose J H, Ferrante J, Smith J R 1989 J. Phys.: Condens. Matter 1 1941

    [39]

    Bain E C 1924 Am. Inst. Min. Metall. Eng. 70 25

    [40]

    Heid R, Pintschovius L, Reichardt W, Bohnen K P 2000 Phys. Rev. B 61 12059

  • [1]

    Cazorla C, Alfé D, Gillan M J 2008 Phys. Rev. B 77 224103

    [2]

    Duthie J C, Pettifor D G 1977 Phys. Rev. Lett. 38 564

    [3]

    Friedel J 1969 The Physics of Metals (London: Cambridge University)

    [4]

    Heine V 1967 Phys. Rev. 153 673

    [5]

    Pettifor D G 1972 Metallurgical Chemistry (London: Her Majesty’s Stationery Office)

    [6]

    Souvatzis P, Eriksson O 2008 Phys. Rev. B 77 024110

    [7]

    Zheng-Johansson J X, Eriksson O, Johansson B 1999 Phys. Rev. B 69 6131

    [8]

    Cazorla C, Gillan M J, Taioli S, Alfé D 2007 J. Chem. Phys. 126 194502

    [9]

    Taioli S, Cazorla C, Gillan M J, Alfé D 2007 Phys. Rev. B 75 214103

    [10]

    Ross M, Errandonea D, Boehler R 2007 Phys. Rev. B 76 184118

    [11]

    Errandonea D 2005 Physica B (Amsterdam) 357 356

    [12]

    Belonoshko A B, Simak S I, Kochetov A E, Johansson B, Burakovsky L, Preston D L 2004 Phys. Rev. Lett. 92 195701

    [13]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502

    [14]

    Hebbache M, Zemzemi M 2004 Phys. Rev. B 70 224107

    [15]

    Liu C M, Cheng Y, Zhu B, Ji G F 2011 Physica B 406 2110

    [16]

    Occelli F, Farber D L, Badro J, Aracne C M, Teter D M, Hanfland M, Canny B, Couzinet B 2004 Phys. Rev. Lett. 93 095502

    [17]

    Shiiki K, Hio O 1997 Jpn. J. Appl. Phys. 36 7360

    [18]

    Watanabe S, Komine T, Kai T, Shiiki K 2000 J. Magn. Magn. Mater. 220 277

    [19]

    Schönecker S, Richter M, Koepernik K, Eschrig H 2012 Phys. Rev. B 85 024407

    [20]

    Wang W C, Shen Y X, Li J H, Liu B X 2006 J. Phys.: Condens. Matter 18 9911

    [21]

    Wang W C, Kong Y, He X, Liu B X 2006 Appl. Phys. Lett. 89 262511

    [22]

    Herper H C, Hoffmann E, Entel P 1999 Phys. Rev. B 60 3839

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [27]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [29]

    Alfé D 2009 Comput. Phys. Commun 180 2622

    [30]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [31]

    Mermin N D 1965 Phys. Rev. 137 A1441

    [32]

    Cazorla C, Gillan M J 2007 J. Chem. Phys. 126 194502

    [33]

    Gunnarsson O 1976 J. Phys. F 6 587

    [34]

    Janak J F 1977 Phys. Rev. B 16 255

    [35]

    Cynn H, Klepeis J E, Yoo C, Young D A 2002 Phys. Rev. Lett. 88 135701

    [36]

    Kittel C 1996 Introduction to solid state physics (New York: Wiley)

    [37]

    Vinet P, Ferrante J, Smith J R, Rose J H 1986 J. Phys. C: Solid State Phys. 19 L467

    [38]

    Vinet P, Rose J H, Ferrante J, Smith J R 1989 J. Phys.: Condens. Matter 1 1941

    [39]

    Bain E C 1924 Am. Inst. Min. Metall. Eng. 70 25

    [40]

    Heid R, Pintschovius L, Reichardt W, Bohnen K P 2000 Phys. Rev. B 61 12059

  • [1] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [3] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211163
    [4] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪. Co2-基Heusler合金Co2FeAl1–xSix(x = 0.25, x = 0.5, x = 0.75)的结构、电子结构及热电特性的第一性原理研究. 物理学报, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [5] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [6] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [7] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [8] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [9] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究 . 物理学报, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [10] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算. 物理学报, 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [11] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [12] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [13] 程志达, 朱静, 孙铁昱. 面心立方单晶镍纳米线稳定性及磁性的第一性原理计算. 物理学报, 2011, 60(3): 037504. doi: 10.7498/aps.60.037504
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [16] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [17] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [18] 王海燕, 崔红保, 历长云, 李旭升, 王狂飞. AlAs相变及热动力学性质的第一性原理研究. 物理学报, 2009, 58(8): 5598-5603. doi: 10.7498/aps.58.5598
    [19] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [20] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究. 物理学报, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
计量
  • 文章访问数:  3922
  • PDF下载量:  563
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-22
  • 修回日期:  2013-06-21
  • 刊出日期:  2013-09-05

高温高压下过渡金属Ru的结构相变

  • 1. 四川大学物理科学与技术学院, 成都 610064;
  • 2. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理重点实验室, 绵阳 621900;
  • 3. 武警警官学院数学与物理学系, 成都 610213
    基金项目: 国家自然科学基金(批准号: 11102194);冲击波物理与爆轰物理国防科技重点实验室基金(批准号: 9140C670201110C6704, 9140C6702011103);中国工程物理研究院科学技术发展基金(批准号: 2012B0101002)和中国工程物理研究院双百人才基金(批准号: 032904)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理和准简谐晶格动力学方法对Ru的六角密排 (hcp)、面心立方 (fcc)、体心四方 (bct) 和体心立方 (bcc) 结构的磁性、晶格结构稳定性和高温高压下的相变进行了系统的研究. 计算获得了各相结构的磁性基态及其稳定性范围, 结果表明: 零温下在计算的压力范围内, NM-hcp 结构是Ru最稳定的结构, 压力的单独作用下并没有相变的发生; NM-fcc结构是Ru的亚稳定结构, 而NM-bcc和FM-bct结构在动力学上并不稳定. 高温高压下Ru将发生从NM-hcp到NM-fcc结构的相变, 并给出了Ru的温度压力相图.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回