搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性

姚仲瑜 孙丽 潘孟美 孙书娟

引用本文:
Citation:

第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性

姚仲瑜, 孙丽, 潘孟美, 孙书娟

First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb

Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan
PDF
导出引用
  • 采用第一性原理的全势能线性缀加平面波方法, 对semi-Heusler合金CoCrTe和CoCrSb 的电子结构进行自旋极化计算. CoCrTe和CoCrSb处于平衡晶格常数时是半金属性铁磁体, 其半金属隙分别为0.28和0.22 eV, 晶胞总磁矩为3.00 B和2.00 B. CoCrTe和CoCrSb的晶胞总磁矩主要来自于Cr原子磁矩. Co, Te和Sb的原子磁矩较小, 它们的磁矩方向与Cr原子的磁矩方向相反. 使晶格常数在 13%的范围内变化(相对于平衡晶格常数), 并计算CoCrTe 和CoCrSb 的电子结构. 计算研究表明, CoCrTe和CoCrSb的晶格常数变化分别在-11.4%-9.0%和-11.2%-2.0%时仍具有半金属性, 并且它们晶胞总磁矩稳定于3.00 B 和2.00 B.
    Half-metallic ferromagnet, in which the electrons with one spin band are metallic and the electrons with another spin band are semiconducting, is believed to be the most promising spin-injector material for spintronic devices, such as spin valves, spin filters, spin diodes, and magnetic tunnel junctions. The main advantages of half-metallic Heusler alloy over other half-metallic systems are their relatively high Curie temperatures and structural similarity to important binary semiconductors that are widely utilized in the industry. Thus far, half-metallicity has been predicted theoretically or confirmed experimentally in a limited number of Heusler alloys. Exploring new half-metallic Heusler alloys is necessary. In this study, the full-potential linearized augmented plane wave (FP_LAPW) method under density functional theory is utilized to investigate the electronic structures and magnetisms of semi-Heusler alloys CoCrTe and CoCrSb. In the calculations, the generalized gradient approximation (GGA) in the scheme of Perdew-Bueke-Ernzerhof is adopted to treat the exchange-correlation potential. The cutoff parameter is set to be Rmt Kmax =9, where Rmt is the smallest atomic sphere radius and Kmax is the maximum value of the reciprocal lattice vector. Meshes (131313 k-points) are used in the first Brillouin zone integration. Self-consistent calculations are considered to be convergent only when the integrated charge difference between the last two iterations is less than 110-4 e/cell. Spin-polarized calculations of the electronic structure for the semi-Heusler alloys CoCrTe and CoCrSb are performed. The calculations reveal that CoCrTe and CoCrSb at their equilibrium lattice constants are half-metallic ferromagnets with half-metallic gaps of 0.28 and 0.22 eV and total magnetic moments of 3.00 and 2.00 B per formula unit, respectively. The calculated integer total magnetic moments (in B) are consistent with the Slater-Pauling rule, Mt = Zt-18, where Zt denotes the total number of valence electrons and Mt means the total magnetic moment (in B) per formula unit. Moreover, the spin moment of the Cr atom is obviously larger than those of the Co, Te, and Sb atoms. Co, Te and Sb are all antiferromagnetically coupled to Cr for CoCrTe and CoCrSb. The electronic structures of CoCrTe and CoCrSb are also calculated as their lattice constants change from -13% to +13% relative to the equilibrium lattice constant. The calculated results indicate that CoCrTe and CoCrSb can maintain their half-metallicities and retain their total magnetic moments of 3.00 and 2.00 B per formula unit even as their lattice constants change from -11.4% to 9.0% and from -11.2% to 2.0%, respectively. The semi-Heusler alloys CoCrTe and CoCrSb should be useful in spintronics and other applications.
      通信作者: 姚仲瑜, yzy@hainnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11364014, 11364015)和海南省自然科学基金(批准号: 113005, 20165196)资助的课题.
      Corresponding author: Yao Zhong-Yu, yzy@hainnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11364014, 11364015) and the Natural Science Foundation of Hainan Province, China (Grant Nos. 113005, 20165196).
    [1]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [2]

    Yanase A, Siratori K 1984 J. Phys. Soc. Jpn. 53 312

    [3]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211

    [4]

    Galanakis I, Mavropoulos P 2003 Phys. Rev. B 67 104417

    [5]

    Yao K L, Gao G Y, Liu Z L, Zhu L 2005 Solid State Commun. 133 301

    [6]

    Xie W H, Xu Y Q, Liu B G, Pettifor D G 2003 Phys. Rev. Lett. 91 037204

    [7]

    Yao Z, Zhang Y S, Yao K L 2012 Appl. Phys. Lett. 101 062402

    [8]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys. Condens. Matter 15 7891

    [9]

    Galanakis I, Mavropoulos P 2007 J. Phys.: Condens. Matter 19 315213

    [10]

    Picizzio S, Continenza A, Freeman A J 2002 Phys. Rev. B 66 094421

    [11]

    Droghetti A, Baadji N, Sanvito S 2009 Phys. Rev. B 80 235310

    [12]

    Gao G Y, Yao K L 2012 J. Appl. Phys. 111 113703

    [13]

    Soeya S, Hayakawa J, Takahashi H, Ito K, Yamamoto C, Kida A, Asano H, Matsui M 2002 Appl. Phys. Lett. 80 823

    [14]

    Watts S M, Wirth S, von Molnar S, Barry A, Coey J M D 2000 Phys. Rev. B 61 9621

    [15]

    Soulen Jr. R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [16]

    Kato H, Okuda T, Okimoto Y, Tomioka Y, Takenoya Y, Ohkubo A, Kawasaki M, Tokuraa Y 2002 Appl. Phys. Lett. 81 328

    [17]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese) [赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 物理学报 60 047108]

    [18]

    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H 2006 Appl. Phys. Lett. 88 192508

    [19]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchel-kanova A Y, Treger D M 2001 Science 294 1488

    [20]

    Webster P J, Ziebeck K R A 1988 Alloys and Compounds of d-Elements with Main Group Elements (Berlin: Springer) pp75-184

    [21]

    Ziebeck K R A, Neumann K U 2001 Magnetic Properties of Metals (Berlin: Springer) pp64-414

    [22]

    Chen J, Gao G Y, Yao K L, Song M H 2011 J. Alloys Compd. 509 10172

    [23]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys. Condens. Matter 15 7891

    [24]

    Zhang M, Liu Z H, Hu H N, Liu G D, Cui Y T, Wu G H, Bruck E, de Boer F R, Li Y X 2004 J. Appl. Phys. 95 7219

    [25]

    Kubler J 1984 Physica B, C 127 257

    [26]

    de Groot R A, van der Kraan A M, Buschow K H J 1986 J. Magn. Magn. Mater. 61 330

    [27]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 1990 Comput. Phys. Commun. 59 399

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Otto M J, van Woerden R A M, van der Valk P J, Wijngaard J, van Bruggen C F, Haas C, Buschow K H J 1989 J. Phys. Condens. Matter 1 2341

    [30]

    Helmholdt R B, de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1984 J. Magn. Magn. Mater. 43 249

    [31]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 134428

    [32]

    Block T, Carey M J, Gurney B A, Jepsen O 2004 Phys. Rev. B 70 205114

  • [1]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [2]

    Yanase A, Siratori K 1984 J. Phys. Soc. Jpn. 53 312

    [3]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211

    [4]

    Galanakis I, Mavropoulos P 2003 Phys. Rev. B 67 104417

    [5]

    Yao K L, Gao G Y, Liu Z L, Zhu L 2005 Solid State Commun. 133 301

    [6]

    Xie W H, Xu Y Q, Liu B G, Pettifor D G 2003 Phys. Rev. Lett. 91 037204

    [7]

    Yao Z, Zhang Y S, Yao K L 2012 Appl. Phys. Lett. 101 062402

    [8]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys. Condens. Matter 15 7891

    [9]

    Galanakis I, Mavropoulos P 2007 J. Phys.: Condens. Matter 19 315213

    [10]

    Picizzio S, Continenza A, Freeman A J 2002 Phys. Rev. B 66 094421

    [11]

    Droghetti A, Baadji N, Sanvito S 2009 Phys. Rev. B 80 235310

    [12]

    Gao G Y, Yao K L 2012 J. Appl. Phys. 111 113703

    [13]

    Soeya S, Hayakawa J, Takahashi H, Ito K, Yamamoto C, Kida A, Asano H, Matsui M 2002 Appl. Phys. Lett. 80 823

    [14]

    Watts S M, Wirth S, von Molnar S, Barry A, Coey J M D 2000 Phys. Rev. B 61 9621

    [15]

    Soulen Jr. R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [16]

    Kato H, Okuda T, Okimoto Y, Tomioka Y, Takenoya Y, Ohkubo A, Kawasaki M, Tokuraa Y 2002 Appl. Phys. Lett. 81 328

    [17]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese) [赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 物理学报 60 047108]

    [18]

    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H 2006 Appl. Phys. Lett. 88 192508

    [19]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchel-kanova A Y, Treger D M 2001 Science 294 1488

    [20]

    Webster P J, Ziebeck K R A 1988 Alloys and Compounds of d-Elements with Main Group Elements (Berlin: Springer) pp75-184

    [21]

    Ziebeck K R A, Neumann K U 2001 Magnetic Properties of Metals (Berlin: Springer) pp64-414

    [22]

    Chen J, Gao G Y, Yao K L, Song M H 2011 J. Alloys Compd. 509 10172

    [23]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys. Condens. Matter 15 7891

    [24]

    Zhang M, Liu Z H, Hu H N, Liu G D, Cui Y T, Wu G H, Bruck E, de Boer F R, Li Y X 2004 J. Appl. Phys. 95 7219

    [25]

    Kubler J 1984 Physica B, C 127 257

    [26]

    de Groot R A, van der Kraan A M, Buschow K H J 1986 J. Magn. Magn. Mater. 61 330

    [27]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 1990 Comput. Phys. Commun. 59 399

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Otto M J, van Woerden R A M, van der Valk P J, Wijngaard J, van Bruggen C F, Haas C, Buschow K H J 1989 J. Phys. Condens. Matter 1 2341

    [30]

    Helmholdt R B, de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1984 J. Magn. Magn. Mater. 43 249

    [31]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 134428

    [32]

    Block T, Carey M J, Gurney B A, Jepsen O 2004 Phys. Rev. B 70 205114

  • [1] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [2] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [3] 许佳玲, 贾利云, 靳晓庆, 郝兴楠, 马丽, 侯登录. 系列CoMnZnZ四元Heusler化合物的结构和半金属铁磁性. 物理学报, 2019, 68(15): 157501. doi: 10.7498/aps.68.20190207
    [4] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪. Co2-基Heusler合金Co2FeAl1–xSix(x = 0.25, x = 0.5, x = 0.75)的结构、电子结构及热电特性的第一性原理研究. 物理学报, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [5] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [6] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [7] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [8] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [9] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [10] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] 杜音, 王文洪, 张小明, 刘恩克, 吴光恒. 铁基Heusler合金Fe2Co1-xCrxSi的结构、磁性和输运性质的研究. 物理学报, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [12] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [13] 姚仲瑜, 傅军, 龚少华, 张月胜, 姚凯伦. 晶格各向同性应变对闪锌矿结构CrS和CrSe的半金属性和磁性的影响. 物理学报, 2011, 60(12): 127103. doi: 10.7498/aps.60.127103
    [14] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [15] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [16] 赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒. Co50Fe25-xMnxSi25系列合金的结构、磁性和半金属性研究. 物理学报, 2011, 60(4): 047108. doi: 10.7498/aps.60.047108
    [17] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [18] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
计量
  • 文章访问数:  3032
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-19
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性

  • 1. 海南师范大学物理与电子工程学院, 海口 571158
  • 通信作者: 姚仲瑜, yzy@hainnu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11364014, 11364015)和海南省自然科学基金(批准号: 113005, 20165196)资助的课题.

摘要: 采用第一性原理的全势能线性缀加平面波方法, 对semi-Heusler合金CoCrTe和CoCrSb 的电子结构进行自旋极化计算. CoCrTe和CoCrSb处于平衡晶格常数时是半金属性铁磁体, 其半金属隙分别为0.28和0.22 eV, 晶胞总磁矩为3.00 B和2.00 B. CoCrTe和CoCrSb的晶胞总磁矩主要来自于Cr原子磁矩. Co, Te和Sb的原子磁矩较小, 它们的磁矩方向与Cr原子的磁矩方向相反. 使晶格常数在 13%的范围内变化(相对于平衡晶格常数), 并计算CoCrTe 和CoCrSb 的电子结构. 计算研究表明, CoCrTe和CoCrSb的晶格常数变化分别在-11.4%-9.0%和-11.2%-2.0%时仍具有半金属性, 并且它们晶胞总磁矩稳定于3.00 B 和2.00 B.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回