搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长

张马淋 葛剑峰 段明超 姚钢 刘志龙 管丹丹 李耀义 钱冬 刘灿华 贾金锋

引用本文:
Citation:

SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长

张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋

Molecular beam epitaxy growth of multilayer FeSe thin film on SrTiO3 (001)

Zhang Ma-Lin, Ge Jian-Feng, Duan Ming-Chao, Yao Gang, Liu Zhi-Long, Guan Dan-Dan, Li Yao-Yi, Qian Dong, Liu Can-Hua, Jia Jin-Feng
PDF
导出引用
  • 近几年, 由于用分子束外延法在SrTiO3衬底表面制备的单层FeSe具有很高的超导转变温度而引发了极大的研究热潮, 随之而来的是对多层FeSe薄膜日益增长的研究兴趣. 但目前还没有对成功生长高质量多层FeSe薄膜的详细报道. 本文利用高能电子衍射仪(RHEED) 实时监控在不同生长条件下制备的多层FeSe薄膜, 发现在FeSe薄膜的生长初期, RHEED图像的强度演化基本符合台阶密度模型的描述特征, 即台阶密度 正相关于衍射条纹强度. FeSe(02)衍射条纹的强度在第一生长周期内呈现稳定而明显的峰型振荡, 而且不受高能电子掠射角的影响, 最适合用来标定FeSe薄膜的厚度. 结合扫描隧道显微镜对FeSe薄膜质量的原位观察, 确定了制备多层FeSe薄膜的最佳生长条件, 为FeSe薄膜的物性研究提供了重要的材料基础.
    Single-layer FeSe film grown on SrTiO3(001) surface (STO surface) by molecular beam epitaxy has aroused a great research boom ever since the discovery of its huge superconductive energy gap which indicates a possible critical temperature (Tc) higher than the liquid nitrogen temperature. The interface enhanced superconductivity with a Tc above 100 K is revealed in an in situ electrical transport measurement by using a four-point probe installed in a scanning tunneling microscope (STM). Consequent research interest in multi-layer FeSe films grown on STO surface is also increasing. The quality of thick FeSe film, however, has not been well studied yet in previous studies, although it is related to the sample properties including superconductivity. Here, reflection high-energy electron diffraction (RHEED) is used to monitor the growths of multi-layer FeSe thin films on STO surface under different growth conditions. Combing the RHEED results with STM observations taken at various FeSe coverages, we find that the intensity evolution of the RHEED pattern in the early growth stage can be well explained by the step density model but not by the widely known facet model. The intensity evolution of the FeSe(02) diffraction streak exhibits a single-peak oscillation in the growing of the first layer of FeSe. As the oscillation does not depend on the grazing angle of the high-energy electron beam, the FeSe(02) diffraction streak is very suitable for calibrating the FeSe growth rate. In contrast, the intensity of the specular spot exhibits different evolution pattern when the grazing angle of electron beam is changed. It is found in STM observations that only at an appropriate substrate temperature and a growth rate can the high-quality multi-layer FeSe films be grown on STO substrates. If the growth temperature is too high, the FeSe molecules nucleate into islands so that FeSe films with various thickness values eventually come into being on the STO surface. If the growth temperature is too low, a different phase of FeSe film is formed. The optimal growth temperature is in a range from 400 ℃ to 430 ℃, within which a two-layer FeSe film grown at a low rate (0.15 layer/min) coveres the whole STO surface with a negligible number of small FeSe islands. In contrast, a larger growth rate is necessary for growing thicker FeSe film. This is because FeSe islands tend to come into form at steps when the growth rate is too low, which is more distinct in a thicker FeSe film. An STM image of 80-layer FeSe film grown under an optimal condition, i.e., the substrate temperature of 420 ℃ and the growth rate of 2.3 layer/min, shows that it is in a perfect layer-by-layer growth mode. These experimental results are useful for growing high-quality multi-layer FeSe films on STO substrates, which could be critical for studying their physical properties and relevant physical phenomena.
      通信作者: 刘灿华, canhualiu@sjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB921902, 2012CB927401, 2011CB922202)、国家自然科学基金(批准号: 11521404, 11134008, 11574201, 11574202, 11504230)和上海市科委科技基金(批准号: 15JC1402300, 14PJ1404600)资助的课题.
      Corresponding author: Liu Can-Hua, canhualiu@sjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921902, 2012CB927401, 2011CB922202), the National Natural Science Foundation of China (Grant Nos. 11521404, 11134008, 11574201, 11574202, 11504230), and the Funds of Shanghai Committee of Science and Technology, China (Grant Nos. 15JC1402300, 14PJ1404600).
    [1]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu Phillip M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [2]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [3]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285

    [4]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775

    [5]

    Wang L L, Ma X C, Chen X, Xue Q K 2013 Chin. Phys. B 22 086801

    [6]

    Imai Y, Sawada Y, Nabeshima F, Maedaet A 2015 Proc. Natl. Acad. Sci. USA 112 1937

    [7]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi1 S, Casper1 F, Ksenofontov V, Wortmann G, Felseret C 2009 Nat. Mater. 8 630

    [8]

    Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M, Prassides K 2009 Phys. Rev. B 80 064206

    [9]

    Jung S G, Lee N H, Choi E M, Kang W N, Lee S I, Hwang T J, Kim D H 2010 Physica C 470 1977

    [10]

    Chen L, Tsai C F, Zhu Y Y, Bi Z X, Wang H Y 2011 Physica C 471 515

    [11]

    Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys: Condens. Mat. 26 265002

    [12]

    Wang M, Ou Y B, Li F S, Zhang W H, Tang C J, Wang L L, Xue Q K, Ma X C 2014 Acta Phys. Sin. 63 027401 (in Chinese) [王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村 2014 物理学报 63 027401]

    [13]

    Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2015 arXiv: 1508 07689

    [14]

    Resh J, Jamison K D, Strozier J, Bensaoula A, Ignatiev A 1989 Phys. Rev. B 40 11799

    [15]

    Nemcsics 2002 Thin Solid Films 412 60

    [16]

    Zhang J, Neave J H, Dobson P J, Joyce B A 1987 Appl. Phys. A 42 317

    [17]

    Tan S, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X H, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [18]

    Huang D, Song C L, Webb T A, Fang S A, Chang C Z, Moodera J S, Kaxiras E, Hoffman J E 2015 Phys. Rev. Lett. 115 017002

    [19]

    Neave J H, Joyce B A, Dobson P J, Norton N 1983 Appl. Phys. A 31 1

    [20]

    Blger B, Larsen P K 1986 Rev. Sci. Instrum. 57 1363

    [21]

    Chen K M, Zhou T C, Fan Y L, Sheng C, Yu M R 1990 Acta Phys. Sin. 39 1937 (in Chinese) [陈可明, 周铁城, 樊永良, 盛篪, 俞鸣人 1990 物理学报 39 1937]

    [22]

    Wang Z L 1993 Rep. Prog. Phys. 56 997

    [23]

    Shin B, Leonard J P, McCamy J W, Aziz Michael J 2007 J. Vac. Sci. Technol. A 25 221

    [24]

    Okamoto H 1991 J. Phase. Equilib. Diff. 12 383

    [25]

    Ohring M 2001 Materials Science of Thin Films 7.6.1 (San Diego: Academic press) pp340-345

    [26]

    Clarke S, Vvedensky D D 1988 J. Appl. Phys. 63 2272

    [27]

    Braun W, Trampert A, Dweritz L, Ploog K H 1997 Phys. Rev. B 55 1689

    [28]

    Sudijono J, Johnson M D, Snyder C W, Elowitz M B, Orr B G 1992 Phys. Rev. Lett. 69 2811

    [29]

    Korte U, Maksym P A 1997 Phys. Rev. Lett. 78 2381

    [30]

    Zhang W, Li Z, Li F, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L L, Ma X C, Xue Q K 2014 Phys. Rev. B 89 060506

  • [1]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu Phillip M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [2]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [3]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285

    [4]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775

    [5]

    Wang L L, Ma X C, Chen X, Xue Q K 2013 Chin. Phys. B 22 086801

    [6]

    Imai Y, Sawada Y, Nabeshima F, Maedaet A 2015 Proc. Natl. Acad. Sci. USA 112 1937

    [7]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi1 S, Casper1 F, Ksenofontov V, Wortmann G, Felseret C 2009 Nat. Mater. 8 630

    [8]

    Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M, Prassides K 2009 Phys. Rev. B 80 064206

    [9]

    Jung S G, Lee N H, Choi E M, Kang W N, Lee S I, Hwang T J, Kim D H 2010 Physica C 470 1977

    [10]

    Chen L, Tsai C F, Zhu Y Y, Bi Z X, Wang H Y 2011 Physica C 471 515

    [11]

    Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys: Condens. Mat. 26 265002

    [12]

    Wang M, Ou Y B, Li F S, Zhang W H, Tang C J, Wang L L, Xue Q K, Ma X C 2014 Acta Phys. Sin. 63 027401 (in Chinese) [王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村 2014 物理学报 63 027401]

    [13]

    Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2015 arXiv: 1508 07689

    [14]

    Resh J, Jamison K D, Strozier J, Bensaoula A, Ignatiev A 1989 Phys. Rev. B 40 11799

    [15]

    Nemcsics 2002 Thin Solid Films 412 60

    [16]

    Zhang J, Neave J H, Dobson P J, Joyce B A 1987 Appl. Phys. A 42 317

    [17]

    Tan S, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X H, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [18]

    Huang D, Song C L, Webb T A, Fang S A, Chang C Z, Moodera J S, Kaxiras E, Hoffman J E 2015 Phys. Rev. Lett. 115 017002

    [19]

    Neave J H, Joyce B A, Dobson P J, Norton N 1983 Appl. Phys. A 31 1

    [20]

    Blger B, Larsen P K 1986 Rev. Sci. Instrum. 57 1363

    [21]

    Chen K M, Zhou T C, Fan Y L, Sheng C, Yu M R 1990 Acta Phys. Sin. 39 1937 (in Chinese) [陈可明, 周铁城, 樊永良, 盛篪, 俞鸣人 1990 物理学报 39 1937]

    [22]

    Wang Z L 1993 Rep. Prog. Phys. 56 997

    [23]

    Shin B, Leonard J P, McCamy J W, Aziz Michael J 2007 J. Vac. Sci. Technol. A 25 221

    [24]

    Okamoto H 1991 J. Phase. Equilib. Diff. 12 383

    [25]

    Ohring M 2001 Materials Science of Thin Films 7.6.1 (San Diego: Academic press) pp340-345

    [26]

    Clarke S, Vvedensky D D 1988 J. Appl. Phys. 63 2272

    [27]

    Braun W, Trampert A, Dweritz L, Ploog K H 1997 Phys. Rev. B 55 1689

    [28]

    Sudijono J, Johnson M D, Snyder C W, Elowitz M B, Orr B G 1992 Phys. Rev. Lett. 69 2811

    [29]

    Korte U, Maksym P A 1997 Phys. Rev. Lett. 78 2381

    [30]

    Zhang W, Li Z, Li F, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L L, Ma X C, Xue Q K 2014 Phys. Rev. B 89 060506

  • [1] 尤明慧, 李雪, 李士军, 刘国军. 晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.72.20221383
    [2] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控. 物理学报, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [3] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [4] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [5] 杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权. 基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究. 物理学报, 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [6] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [7] 吴建邦, 周民杰, 王雪敏, 王瑜英, 熊政伟, 程新路, Marie-José Casanove, Christophe Gatel, 吴卫东. 纳米FePt颗粒:MgO多层复合薄膜的外延生长、微观结构与磁性研究. 物理学报, 2014, 63(16): 166801. doi: 10.7498/aps.63.166801
    [8] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [9] 苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明. Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金. 物理学报, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [10] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性. 物理学报, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [11] 胡懿彬, 郝智彪, 胡健楠, 钮浪, 汪莱, 罗毅. 分子束外延生长InGaN/AlN量子点的组分研究. 物理学报, 2012, 61(23): 237804. doi: 10.7498/aps.61.237804
    [12] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [13] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究. 物理学报, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [14] 赵明海, 孙静静, 王丹, 邹志强, 梁齐. C60分子在Si(111)-7×7表面分子束外延生长的STM研究. 物理学报, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [15] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [16] 李天富, 陈东风, 王洪立, 孙凯, 刘蕴韬. 超薄Fe(4?)膜磁特性极化中子反射研究. 物理学报, 2009, 58(11): 7993-7997. doi: 10.7498/aps.58.7993
    [17] 张冲, 叶辉, 张磊, 皇甫幼睿, 刘旭. 在Si-Ge晶体外延生长中的RHEED花样研究. 物理学报, 2009, 58(11): 7765-7772. doi: 10.7498/aps.58.7765
    [18] 徐晓华, 牛智川, 倪海桥, 徐应强, 张 纬, 贺正宏, 韩 勤, 吴荣汉, 江德生. 分子束外延生长的(GaAs1-xSbx/InyGa1-yAs)/GaAs量子阱光致发光谱研究. 物理学报, 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
    [19] 王 茺, 陈平平, 周旭昌, 夏长生, 王少伟, 陈效双, 陆 卫. 压电调制反射光谱研究GaAs/Al0.29Ga0.71As单量子阱. 物理学报, 2005, 54(7): 3337-3341. doi: 10.7498/aps.54.3337
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  4053
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-22
  • 修回日期:  2016-04-06
  • 刊出日期:  2016-06-05

SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长

  • 1. 上海交通大学物理与天文系, 人工结构及量子调控教育部重点实验室, 上海 200240;
  • 2. 人工微结构科学与技术协同创新中心, 南京 210093
  • 通信作者: 刘灿华, canhualiu@sjtu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号: 2013CB921902, 2012CB927401, 2011CB922202)、国家自然科学基金(批准号: 11521404, 11134008, 11574201, 11574202, 11504230)和上海市科委科技基金(批准号: 15JC1402300, 14PJ1404600)资助的课题.

摘要: 近几年, 由于用分子束外延法在SrTiO3衬底表面制备的单层FeSe具有很高的超导转变温度而引发了极大的研究热潮, 随之而来的是对多层FeSe薄膜日益增长的研究兴趣. 但目前还没有对成功生长高质量多层FeSe薄膜的详细报道. 本文利用高能电子衍射仪(RHEED) 实时监控在不同生长条件下制备的多层FeSe薄膜, 发现在FeSe薄膜的生长初期, RHEED图像的强度演化基本符合台阶密度模型的描述特征, 即台阶密度 正相关于衍射条纹强度. FeSe(02)衍射条纹的强度在第一生长周期内呈现稳定而明显的峰型振荡, 而且不受高能电子掠射角的影响, 最适合用来标定FeSe薄膜的厚度. 结合扫描隧道显微镜对FeSe薄膜质量的原位观察, 确定了制备多层FeSe薄膜的最佳生长条件, 为FeSe薄膜的物性研究提供了重要的材料基础.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回