-
采用射频磁控溅射在石英玻璃基底上反应溅射制备单斜相(M相) VO2薄膜. 利用V-VASE和IR-VASE椭圆偏振仪及变温附件分别在0.5-3.5 eV (350-2500 nm)和0.083-0.87 eV (1400-15000 nm)入射光能量范围内对相变前后的VO2薄膜进行光谱测试, 运用逐点拟合的方式, 并通过薄膜的吸收峰的特征, 在 0.5-3.5 eV范围内添加3个Lorentz 谐振子色散模型和0.083-0.87 eV范围内添加4个Gaussion振子模型对低温态半导体态的薄膜椭偏参数进行拟合, 再对高温金属态的薄膜添加7个 Lorentz谐振子色散模型对进行椭偏参数的拟合, 得到了较为理想的拟合结果. 结果发现: 半导体态的VO2薄膜的折射率在近红外-中红外基本保持在最大值3.27不变, 且消光系数k在此波段接近于零, 这是由于半导体态薄膜在可见光-近红外光范围内的吸收主要是自由载流子吸收, 而半导体态薄膜的d//轨道内的电子态密度较小. 高温金属态的VO2薄膜的折射率n在近红外-中红外波段具有明显的增大趋势, 且在入射光能量为0.45 eV时大于半导体态的折射率; 消光系数k在近红外波段迅速增大, 原因是 在0.5-1.62 eV范围内, 能带内的自由载流子浓度增加及电子在V3d能带内发生带内的跃迁吸收, 使k值迅速增加; 当能量小于0.5 eV时k值变化平缓, 是由于薄膜内自由载流子浓度和电子跃迁率趋于稳定所致.The monoclinic phase (M phase) VO2 film is prepared on quartz glass substrate by a model MSP-3200 three-target co-sputter coater with RF magnetron reactive sputtering. The optical properties in incident energy ranges of 0.5-3.5 eV (350-2500 nm) and 0.083-0.87 eV (1400-15000 nm) of VO2 film are investigated by spectroscopic ellipsometry with variable temperature attachment. The good results are determined point by point with the three Lorentz harmonic oscillator dispersion models in the range of 0.5-3.5 eV and four Gaussion harmonic oscillator dispersion models in the range of 0.083-0.87 eV in the state of semiconductor below the transition temperature, while adding seven Lorentz harmonic oscillator dispersion models in the high temperature metallic state film results in the characteristic absorption peaks. The results show that the refractive index of the semiconductor state of VO2 film is maintained at maximum 3.27 and extinction coefficient k is close to zero in the near infrared-mid infrared, which is due to the fact that the absorption of semiconductor thin film in the VIS-NIR range is derived from the free carrier absorption and d// orbital of the semiconductor film has less electron density. The refractive index n of high temperature metallic state VO2 film has an obviously increasing trend in the near infrared-the mid infrared which is larger than the refractive index of the semiconductor state when the incident light energy is 0.45 eV. Extinction coefficient k increases rapidly in the near infrared, which is because the density of free carrier increases in the range of 0.5-1.62 eV and electron transition absorption augments within the V3d band. When the incident energy less than 0.5 eV, k value changes gently in the film because free carrier concentration and flow rates are stable.
[1] Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221
[2] Bugayev A A, Gupta M C 2003 Opt. Lett. 28 1463
[3] Sen Y L, Wei T S 2008 Surf. Coat. Tech. 202 5641
[4] Erominek H, Vincent D, Picard F 1993 Opt. Eng. 32 2092
[5] Shen T F R, Lai M H, Yang T C K 2012 J. Taiwan Inst. Chem. Eng. 43 95
[6] Dvorak O, Diers J 1992 Chem. Mater. 4 1074
[7] Zilberberg K, Trost S, Meyer J 2011 Adv. Funct. Mater. 21 4776
[8] Zhao Y, Chen C H, Pan X, Zhu Y H, Holtz M, Bernussi A, Fan Z Y 2013 J. Appl. Phys. 114 113509
[9] Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052
[10] Verleur H W, Barker A S, Berglund C N 1968 Phys. Rev. 172 788
[11] Okazaki K, Sugai S, Muraoka Y, Hiroi Z 2006 Phys. Rev. B 73 165116
[12] Kakiuchida H, Jin P, Nakao S, Tazawa M 2007 Jpn. J. Appl. Phys. 46 L113
[13] Paone A, Sanjines R, Jeanneret P, Schler As 2015 Sol. Energy 118 107
[14] Chen L Y, Qian Y H 1995 Physics 24 75 (in Chinese) [陈良尧,钱佑华 1995 物理 24 75]
[15] Liao N M, Li W, Jiang Y D 2008 Acta Phys. Sin. 57 1542 (in Chinese) [廖乃镘, 李伟, 蒋亚东 2008 物理学报 57 1542]
[16] Wang X D, Shen J, Wang S Z 2009 Acta Phys. Sin. 58 8027 (in Chinese) [王晓栋, 沈军, 王生钊 2009 物理学报 58 8027]
[17] Wang X, Cao Y Z, Zhang Y Z, Yan L, Li Y 2015 Appl. Surf. Sci. 344 230
[18] Zheng Y X, Chen L Y 2011 Modern Optics (Beijing: Electronic Industry Press) (in Chinese) [郑玉祥, 陈良尧 2011 近代光学 (北京: 电子工业出版社)]
[19] Li W 2013 M. S. Dissertation (Shanghai: Fudan University) (in Chinese) [李崴 2013 硕士论文(上海: 复旦大学)]
[20] Goodenough J B 1960 Phys. Rev. 117 1442
[21] Goodenough J B 1971 J. Solid State Chem. 3 490
[22] Goodenough J B 1971 Metallic Oxides, in: Progress in Solid State Chemistry (edited by Reiss H) (Oxford: Pergam on Press) pp145-399
[23] Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K, Kachi S 1990 Phys. Rev. B 41 4993
[24] Shen X C 2002 Spectroscopy and Optical Properties of Semiconductor (Beijing: Science Press) (in Chinese) [沈学础 2002 半导体光谱和光学性质 (北京:科学出版社)第20页]
[25] Volker E 2002 Ann. Phys. (Leipzig) 11 9
[26] Blaauw C, Leenhouts F, Woude van der F, Sawatzky G A 1975 J. Phys. C: Solid State Phys. 8 459
[27] Bermudez V M, Williams R T, Long J P, Reed R K, Klein P H 1992 Phys. Rev. B 45 9266
[28] Goering E 1996 Ph. D. Dissertation (Augsburg: University of Augsburg)
[29] Goering E, Schramme M, Muller O, Paulin H, Lemm M K, denBoer M L, Horn S 1997 Physica B 230 996
[30] Goering E, Schramme M, Muller O, Barth R, Paulin H, Klemm M, denBoer M L, Horn S 1997 Phys. Rev. B 55 4225
-
[1] Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221
[2] Bugayev A A, Gupta M C 2003 Opt. Lett. 28 1463
[3] Sen Y L, Wei T S 2008 Surf. Coat. Tech. 202 5641
[4] Erominek H, Vincent D, Picard F 1993 Opt. Eng. 32 2092
[5] Shen T F R, Lai M H, Yang T C K 2012 J. Taiwan Inst. Chem. Eng. 43 95
[6] Dvorak O, Diers J 1992 Chem. Mater. 4 1074
[7] Zilberberg K, Trost S, Meyer J 2011 Adv. Funct. Mater. 21 4776
[8] Zhao Y, Chen C H, Pan X, Zhu Y H, Holtz M, Bernussi A, Fan Z Y 2013 J. Appl. Phys. 114 113509
[9] Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052
[10] Verleur H W, Barker A S, Berglund C N 1968 Phys. Rev. 172 788
[11] Okazaki K, Sugai S, Muraoka Y, Hiroi Z 2006 Phys. Rev. B 73 165116
[12] Kakiuchida H, Jin P, Nakao S, Tazawa M 2007 Jpn. J. Appl. Phys. 46 L113
[13] Paone A, Sanjines R, Jeanneret P, Schler As 2015 Sol. Energy 118 107
[14] Chen L Y, Qian Y H 1995 Physics 24 75 (in Chinese) [陈良尧,钱佑华 1995 物理 24 75]
[15] Liao N M, Li W, Jiang Y D 2008 Acta Phys. Sin. 57 1542 (in Chinese) [廖乃镘, 李伟, 蒋亚东 2008 物理学报 57 1542]
[16] Wang X D, Shen J, Wang S Z 2009 Acta Phys. Sin. 58 8027 (in Chinese) [王晓栋, 沈军, 王生钊 2009 物理学报 58 8027]
[17] Wang X, Cao Y Z, Zhang Y Z, Yan L, Li Y 2015 Appl. Surf. Sci. 344 230
[18] Zheng Y X, Chen L Y 2011 Modern Optics (Beijing: Electronic Industry Press) (in Chinese) [郑玉祥, 陈良尧 2011 近代光学 (北京: 电子工业出版社)]
[19] Li W 2013 M. S. Dissertation (Shanghai: Fudan University) (in Chinese) [李崴 2013 硕士论文(上海: 复旦大学)]
[20] Goodenough J B 1960 Phys. Rev. 117 1442
[21] Goodenough J B 1971 J. Solid State Chem. 3 490
[22] Goodenough J B 1971 Metallic Oxides, in: Progress in Solid State Chemistry (edited by Reiss H) (Oxford: Pergam on Press) pp145-399
[23] Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K, Kachi S 1990 Phys. Rev. B 41 4993
[24] Shen X C 2002 Spectroscopy and Optical Properties of Semiconductor (Beijing: Science Press) (in Chinese) [沈学础 2002 半导体光谱和光学性质 (北京:科学出版社)第20页]
[25] Volker E 2002 Ann. Phys. (Leipzig) 11 9
[26] Blaauw C, Leenhouts F, Woude van der F, Sawatzky G A 1975 J. Phys. C: Solid State Phys. 8 459
[27] Bermudez V M, Williams R T, Long J P, Reed R K, Klein P H 1992 Phys. Rev. B 45 9266
[28] Goering E 1996 Ph. D. Dissertation (Augsburg: University of Augsburg)
[29] Goering E, Schramme M, Muller O, Paulin H, Lemm M K, denBoer M L, Horn S 1997 Physica B 230 996
[30] Goering E, Schramme M, Muller O, Barth R, Paulin H, Klemm M, denBoer M L, Horn S 1997 Phys. Rev. B 55 4225
计量
- 文章访问数: 7243
- PDF下载量: 435
- 被引次数: 0