搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga空位对GaN:Gd体系磁性影响的第一性原理研究

侯振桃 李彦如 刘何燕 代学芳 刘国栋 刘彩池 李英

引用本文:
Citation:

Ga空位对GaN:Gd体系磁性影响的第一性原理研究

侯振桃, 李彦如, 刘何燕, 代学芳, 刘国栋, 刘彩池, 李英

Effect of Ga vacancy on the magnetism in GaN:Gd: First-principles calculation

Hou Zhen-Tao, Li Yan-Ru, Liu He-Yan, Dai Xue-Fang, Liu Guo-Dong, Liu Cai-Chi, Li Ying
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理结合投影缀加平面波的方法, 研究了GaN 中Ga 被稀土元素Gd替代以及与邻近N或Ga空位组成的缺陷复合体的晶格常数、磁矩、形成能以及电子结构等性质. 结果发现, Gd掺杂GaN后禁带宽度变窄, 由直接带隙半导体转为间接带隙半导体; 单个Gd原子掺杂给体系引入大约7 B的磁矩; 在Gd与Ga或N空位形成的缺陷复合体系中, N空位对引入磁矩贡献很小, 大约0.1 B, Ga空位能引入约2 B的磁矩. 随着Ga空位的增多, 体系总磁矩增加, 但增加量与Ga空位的位置分布密切相关. 当Ga空位分布较为稀疏时, Gd单原子磁矩受影响较小, 但当Ga空位距离较近且倾向于形成团簇时, Gd单原子磁矩明显增加, 而且这种情况下空位形成能也最小.
    In recent years, GaN doped with Gd (GaN:Gd) has attracted much attention due to its potential applications in spintronic devices since the high temperature ferromagnetism and the colossal magnetic moment were observed in GaN:Gd. However, the microscopic nature of ferromagnetism in GaN:Gd still is controversial. We investigate the crystal parameters, magnetic moment, formation energies, and electronic structures of the defect complexes formed by Gd and native Ga (or N) vacancies in GaN by using the first-principles method based on the density functional theory. The calculated results show that the energy band gap of GaN:Gd becomes indirect and its width becomes small compared with that of GaN. The lattice constants of GaN:Gd expand due to the larger ionic radius of Gd than that of Ga atom, while they shrink when the Gd atom and Ga vacancies coexist. In the case of the isolated Gd dopant, the Gd-4f electrons lead to a magnetic moment of about 7 B in GaN:Gd. For the defect complex, one Ga vacancy can introduce a magnetic moment of about 2 B, while N vacancy has little effect on the total magnetic moment. In addition, when we focus on the defect complex composed of Gd and five neighboring Ga vacancies, we find that the magnetic moment of per Gd atom and the total magnetic moment depend strongly on the concentration and position of Ga vacancies. When the Ga vacancies are distributed loosely near the Gd atom, the magnetic moment of Gd atom increases slightly, while for the closely-distributed Ga vacancies the Gd magnetic moment can be increased by 2 B. We infer that the interactions among Ga vacancies result in the large magnetic moment of Gd atom. It is also found that the formation energy is very small when the Ga vacancies are distributed thickly around the Gd atom in GaN:Gd. Our results are in qualitative agreement with the results from other studies (Thiess A et al. 2012 Phys. Rev. B 86 180401; Thiess A et al. 2015 Phys. Rev. B 92 104418), where Ga vacancies were proposed to tend to cluster in GaN:Gd and induce the large magnetic moment of Gd. Moreover, the effect of distance between the Gd atom and Ga vacancies on the Gd magnetic moment is also discussed. It is found that the Gd magnetic moment is relatively large when Ga vacancies are close to the Gd atoms.
      通信作者: 李英, liyingphy@126.com
    • 基金项目: 国家自然科学基金(批准号: 11204064, 51271071) 和河北省高等学校高层次人才科学研究项目(批准号: GCC2014023)资助的课题.
      Corresponding author: Li Ying, liyingphy@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204064 51271071) and the Scientific Research Project of Hebei Province High Level Talents in Colleges and Universities, China (Grant No. GCC2014023).
    [1]

    Morkoc H 1994 J. Appl. Phys. 76 1363

    [2]

    Davies S, Huang T S, Gass M H, Papworth A J, Joyce T B, Chalker P R 2004 Appl. Phys. Lett. 84 2556

    [3]

    Wang T X, Li Y, Liu Y M 2011 Phys. Stat. Sol. B 248 1671

    [4]

    Kang B S, Kim S, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L, Linthicum K J, Chu S N G, Baik K, Gila B P, Abernathy C R, Pearton S J 2004 Appl. Phys. Lett. 85 2962

    [5]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese) [李倩倩, 郝秋艳, 李英, 刘国栋 2013 物理学报. 62 017103]

    [6]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Comput. Mater. Sci. 72 32

    [7]

    Jiang L J, Wang X L, Xiao H L, Wang Z G, Yang C B, Zhang M L 2011 Appl. Phys. A 104 429

    [8]

    Gupta S, Zaidi T, Melton A, Malguth E, Yu H B, Liu Z Q, Liu X T, Schwartz J, Ferguson I 2011 J. Appl. Phys. 110 083920

    [9]

    Jadwisienczak W M, Wang J, Tanaka H, Wu J, Palai R, Huhtinen H, Anders A 2010 J. Rare Earth 6 931

    [10]

    Teraguchi N, Suzuki A, Nanishi Y, Zhou Y K, Hashimoto M, Asahi H 2002 Solid State Commun. 122 651

    [11]

    Dhar S, Brandt O, Ramsteiner M, Sapega V F, Ploog K H 2005 Phys. Rev. Lett. 94 037205

    [12]

    Dhar S, Prez L, Brandt O, Trampert A, Ploog K H, Keller J, Beschoten B 2005 Phys. Rev. B 72 245203

    [13]

    Dhar S, Kammermeier T, Ney A, Perez L, Ploog K H, Melnikov A, Wieck A D 2006 Appl. Phys. Lett. 89 062503

    [14]

    Sofer Z, Sedmidubsky D, Moram M, Mackov A, Maryko M, Hejtmnek J, Buchal C, Hardtdegen H, Vcla M, Peřina V, Groetzschel R, Mikulics M 2011 Thin Solid Films 519 6120

    [15]

    Roever M, Malindretos J, Bedoya-Pinto A, Rizzi A, Rauch C, Tuomisto F 2011 Phys. Rev. B 84 081201

    [16]

    Wang M N, Li Q Q, Li Y 2013 J. Hebei Univ. Technol. 4 0058 (in Chinese) [王美娜, 李倩倩, 李英 2013 河北工业大学学报 4 0058]

    [17]

    Sanna S, Schmid W G, Frauenheim T, Gerstmann U 2009 Phys. Rev. B 80 104120

    [18]

    Gohda Y, Oshiyama A 2008 Phys. Rev. B 78 161201

    [19]

    Thiess A, Dederichs P H, Zeller R, Blugel S, Lambrecht W R L 2012 Phys. Rev. B 86 180401

    [20]

    Mishra J K, Dhar S, Brandt O 2010 Solid State Commun. 150 2370

    [21]

    Lozykowski H J 1993 Phys. Rev. B 48 17758

    [22]

    Davies R, Abernathy C R, Pearton S J, Norton D P, Ivill M P, Ren F 2009 Chem. Eng. Commun. 196 1030

    [23]

    Filhol J S, Jones R, Shaw M J, Briddon P R 2004 Appl. Phys. Lett. 84 2841

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Larson P, Lambrecht W R L, Chantis A, Schilfgaarde M V 2007 Phys. Rev. B 75 045114

    [26]

    Thiess A, Blugel S, Dederichs P H, Zeller R, Lambrecht W R L 2015 Phys. Rev. B 92 104418

    [27]

    Hou Z F, Wang X L, Ikeda T, Terakura K, Oshima M, Kakimoto M, Miyata S 2012 Phys. Rev. B 85 165439

  • [1]

    Morkoc H 1994 J. Appl. Phys. 76 1363

    [2]

    Davies S, Huang T S, Gass M H, Papworth A J, Joyce T B, Chalker P R 2004 Appl. Phys. Lett. 84 2556

    [3]

    Wang T X, Li Y, Liu Y M 2011 Phys. Stat. Sol. B 248 1671

    [4]

    Kang B S, Kim S, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L, Linthicum K J, Chu S N G, Baik K, Gila B P, Abernathy C R, Pearton S J 2004 Appl. Phys. Lett. 85 2962

    [5]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese) [李倩倩, 郝秋艳, 李英, 刘国栋 2013 物理学报. 62 017103]

    [6]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Comput. Mater. Sci. 72 32

    [7]

    Jiang L J, Wang X L, Xiao H L, Wang Z G, Yang C B, Zhang M L 2011 Appl. Phys. A 104 429

    [8]

    Gupta S, Zaidi T, Melton A, Malguth E, Yu H B, Liu Z Q, Liu X T, Schwartz J, Ferguson I 2011 J. Appl. Phys. 110 083920

    [9]

    Jadwisienczak W M, Wang J, Tanaka H, Wu J, Palai R, Huhtinen H, Anders A 2010 J. Rare Earth 6 931

    [10]

    Teraguchi N, Suzuki A, Nanishi Y, Zhou Y K, Hashimoto M, Asahi H 2002 Solid State Commun. 122 651

    [11]

    Dhar S, Brandt O, Ramsteiner M, Sapega V F, Ploog K H 2005 Phys. Rev. Lett. 94 037205

    [12]

    Dhar S, Prez L, Brandt O, Trampert A, Ploog K H, Keller J, Beschoten B 2005 Phys. Rev. B 72 245203

    [13]

    Dhar S, Kammermeier T, Ney A, Perez L, Ploog K H, Melnikov A, Wieck A D 2006 Appl. Phys. Lett. 89 062503

    [14]

    Sofer Z, Sedmidubsky D, Moram M, Mackov A, Maryko M, Hejtmnek J, Buchal C, Hardtdegen H, Vcla M, Peřina V, Groetzschel R, Mikulics M 2011 Thin Solid Films 519 6120

    [15]

    Roever M, Malindretos J, Bedoya-Pinto A, Rizzi A, Rauch C, Tuomisto F 2011 Phys. Rev. B 84 081201

    [16]

    Wang M N, Li Q Q, Li Y 2013 J. Hebei Univ. Technol. 4 0058 (in Chinese) [王美娜, 李倩倩, 李英 2013 河北工业大学学报 4 0058]

    [17]

    Sanna S, Schmid W G, Frauenheim T, Gerstmann U 2009 Phys. Rev. B 80 104120

    [18]

    Gohda Y, Oshiyama A 2008 Phys. Rev. B 78 161201

    [19]

    Thiess A, Dederichs P H, Zeller R, Blugel S, Lambrecht W R L 2012 Phys. Rev. B 86 180401

    [20]

    Mishra J K, Dhar S, Brandt O 2010 Solid State Commun. 150 2370

    [21]

    Lozykowski H J 1993 Phys. Rev. B 48 17758

    [22]

    Davies R, Abernathy C R, Pearton S J, Norton D P, Ivill M P, Ren F 2009 Chem. Eng. Commun. 196 1030

    [23]

    Filhol J S, Jones R, Shaw M J, Briddon P R 2004 Appl. Phys. Lett. 84 2841

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Larson P, Lambrecht W R L, Chantis A, Schilfgaarde M V 2007 Phys. Rev. B 75 045114

    [26]

    Thiess A, Blugel S, Dederichs P H, Zeller R, Lambrecht W R L 2015 Phys. Rev. B 92 104418

    [27]

    Hou Z F, Wang X L, Ikeda T, Terakura K, Oshima M, Kakimoto M, Miyata S 2012 Phys. Rev. B 85 165439

  • [1] 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉. Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究. 物理学报, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [2] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [3] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究. 物理学报, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [4] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [5] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究. 物理学报, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [6] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析. 物理学报, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [7] 吴海平, 陈栋国, 黄德财, 邓开明. SrCoO3电子结构和磁学性质的第一性原理研究. 物理学报, 2012, 61(3): 037101. doi: 10.7498/aps.61.037101
    [8] 谭兴毅, 陈长乐, 金克新, 高雁军. 碳掺杂BaTiO3的电子结构和磁性研究. 物理学报, 2012, 61(24): 247102. doi: 10.7498/aps.61.247102
    [9] 乔建良, 常本康, 钱芸生, 高频, 王晓晖, 徐源. 负电子亲和势GaN真空面电子源研究进展. 物理学报, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [10] 王江龙, 葛志启, 李慧玲, 刘洪飞, 于威. 后钙钛矿CaRhO3的电子结构和磁学性质的第一性原理研究. 物理学报, 2011, 60(4): 047107. doi: 10.7498/aps.60.047107
    [11] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [12] 谭兴毅, 陈长乐, 金克新, 陈鹏. N掺杂钛酸盐的电子结构和磁性研究. 物理学报, 2011, 60(12): 127102. doi: 10.7498/aps.60.127102
    [13] 乔建良, 田思, 常本康, 杜晓晴, 高频. 负电子亲和势GaN光电阴极激活机理研究. 物理学报, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [14] 邢海英, 范广涵, 周天明. p,n型掺杂剂与Mn共掺杂GaN的电磁性质. 物理学报, 2009, 58(5): 3324-3330. doi: 10.7498/aps.58.3324
    [15] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [16] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器. 物理学报, 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [17] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Er+O的GaN薄膜光学性质的研究. 物理学报, 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [18] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] 万 威, 唐春艳, 王玉梅, 李方华. GaN晶体中堆垛层错的高分辨电子显微像研究. 物理学报, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [20] 郝静安, 郑浩平. Ga6N6团簇结构性质的理论计算研究. 物理学报, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
计量
  • 文章访问数:  5832
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-10
  • 修回日期:  2016-04-07
  • 刊出日期:  2016-06-05

/

返回文章
返回