搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层二硫化钼多相性质及相变的第一性原理研究

张理勇 方粮 彭向阳

引用本文:
Citation:

单层二硫化钼多相性质及相变的第一性原理研究

张理勇, 方粮, 彭向阳

First-principles study on multiphase property and phase transition of monolayer MoS2

Zhang Li-Yong, Fang Liang, Peng Xiang-Yang
PDF
导出引用
  • 本文基于密度泛函的第一性原理, 并引入范德瓦耳斯力修正, 研究了单层二硫化钼2H, 1T, ZT三种相的电学性质及相变原理. 首先通过结构弛豫确定了三种相的几何结构, 能带和态密度计算证实1T相具有金属性质, ZT相具有半导体性质, 带隙为0.01 eV. 然后结合变形势理论计算了2H和ZT相的迁移率, ZT相的迁移率高达104 cm2V-1s-1, 进一步拓展了单层二硫化钼的应用范围. 最后通过对比三种相吸附锂原子结合能, 计算2H-1T相变能量曲线, 解释了引起二硫化钼相变的原因. 本文的研究结果将对单层二硫化钼实验制备表征以及相关光电器件性能分析提供重要参考.
    Using first principles calculations within density functional theory, we investigate multiphase property and phase transition of monolayer MoS2. All the quantities are calculated using the Vienna ab initio simulation package. Calculations are performed within the generalized gradient approximation with van der Waals corrections (optimized Perdew- Burke-Ernzerhof-vdW). The cutoff energy of plane-wave is set to be 400 eV. The atomic plane and its neighboring image are separated by a 15 vacuum layer. The k-meshes for the structure relaxation and post analysis are 11111 and 19191 respectively.Firstly, we obtain the geometry configurations of 2H-MoS2, 1T-MoS2 and ZT-MoS2 phases through structure relaxing. The lattice constants of 2H-MoS2 are a = 3.190 and b= 5.524 , and total energy is -39.83 eV which means that it is the most stable phase. The lattice constants of 1T-MoS2 are a = 3.191 and b = 5.528 , and total energy is -38.21 eV, which means that it is the most unstable phase. Both 2H-MoS2 and 1T-MoS2 have a three-layer structure with two S layers sandwiching one Mo layer. The difference of 1T-MoS2 from the 2H-MoS2 is the upper S layer shifting. The ZT-MoS2 derives from 1T-MoS2 through lattice distortion. The lattice constants of ZT-MoS2 are a = 3.185 and b = 5.725 , and total energy is -38.80 eV. The total energy determines the following stability order of three phases: 2H-MoS2 ZT-MoS2 1T-MoS2. Our computed results agree well with the other computed and experimental results. Band structure and density of states confirm that 1T-MoS2 is metallic and ZT-MoS2 is semiconducting. But the bandgap of ZT-MoS2 phase is only 0.01 eV. Then we compute the intrinsic carrier mobility values of 2H-MoS2 and ZT-MoS2 at 300 K with the deformation potential theory. The carrier mobility of 2H-MoS2 is between 100 cm2 V-1 s-1 and 400 cm2V-1s-1. Owing to ZT-MoS2 carrier effective mass decreasing obviously, the carrier mobility of ZT phase rises to 104 cm2V-1s-1. The great carrier mobility of ZT-MoS2 covers the shortage of 2H-MoS2 and expands the applications of monolayer MoS2.After obtaining the intrinsic properties of three phases, we investigate the phase transition of monolayer MoS2. Adsorption energy becomes more accurate with van der Waals corrections. Through comparing the adsorption energy, we conclude that the stabilities of Li absorbed on the surfaces of three phases are in the following order: 1T-MoS2 ZTMoS 2 2H-MoS2, which is opposite to the stability order of the three phases. It means that 1T-MoS2 absorbs Li more easily than 2H-MoS2. Finally we compute the energy pathways of the phase transition from 2H-MoS2 to 1T-MoS2. Introducing an electron makes the energy barrier of 2H-1T transition change from 1.85 eV to 1.49 eV. Increasing electron concentration reduces the difficulty in producing phase transition. Li intercalation plays the same role as an electron and the energy barrier drops to 1.24 eV. In conclusion, the MoS2 electron concentration change is the key reason for phase transition. The study results may provide guidance for the preparation and characterization of monolayer MoS2.
      通信作者: 方粮, lfang@nudt.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 61332003)、国家自然科学基金(批准号: 11274265) 和高性能计算国家重点实验室课题基金(批准号: 201501-02)资助的课题.
      Corresponding author: Fang Liang, lfang@nudt.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61332003), the National Natural Science Foundation of China (Grant No. 11274265), and the Fund from HPCL, China (Grant No. 201501-02).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [4]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983

    [5]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [6]

    Li H, Wu J, Yin Z, Zhang H 2014 Acc. Chem. Res. 47 1067

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [9]

    Docherty C J, Parkinson P, Joyce H J, Chiu M H, Chen C H, Lee M Y, Li L J, Herz L M, Johnston M B 2014 ACS Nano 8 11147

    [10]

    Miwa J A, Ulstrup S, Sorensen S G, Dendzik M, Cabo A G, Bianchi M, Lauritsen J V, Hofmann P 2015 Phys. Rev. Lett. 114 046802

    [11]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [12]

    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M W, Chhowalla M 2012 ACS Nano 6 7311

    [13]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344

    [14]

    Fan X, Xu P, Zhou D, Sun Y, Li Y C, Nguyen M A, Terrones M, Mallouk T E 2015 Nano Lett. 15 5956

    [15]

    Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z 2014 Adv. Mater. 26 6467

    [16]

    Wang L, Xu Z, Wang W, Bai X 2014 J. Am. Chem. Soc. 136 6693

    [17]

    Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214

    [18]

    Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 J. Phys. Chem. C 118 1515

    [19]

    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124

    [20]

    Moses P G, Mortensen J J, Lundqvist B I, Norskov J K 2009 J. Chem. Phys. 130 104709

    [21]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Dion M, Rydberg H, Schrer E, Langreth D C, Lundqvist B I 2004 Phys. Rev. Lett. 92 246401

    [26]

    Klime J, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317

    [29]

    Kaasbjerg K, Thygesen K S, Jauho A P 2013 Phys. Rev. B 87 235312

    [30]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72

    [31]

    Fei R, Yang L 2014 Nano Lett. 14 2884

    [32]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z G 2009 J. Am. Chem. Soc. 131 17728

    [33]

    Cai Y, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269

    [34]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [35]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102

    [36]

    Tang Q, Jiang D E 2015 Chem. Mater. 27 3743

    [37]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815

    [38]

    Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G 2011 J. Phys. Chem. C 115 24586

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [4]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983

    [5]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [6]

    Li H, Wu J, Yin Z, Zhang H 2014 Acc. Chem. Res. 47 1067

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [9]

    Docherty C J, Parkinson P, Joyce H J, Chiu M H, Chen C H, Lee M Y, Li L J, Herz L M, Johnston M B 2014 ACS Nano 8 11147

    [10]

    Miwa J A, Ulstrup S, Sorensen S G, Dendzik M, Cabo A G, Bianchi M, Lauritsen J V, Hofmann P 2015 Phys. Rev. Lett. 114 046802

    [11]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [12]

    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M W, Chhowalla M 2012 ACS Nano 6 7311

    [13]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344

    [14]

    Fan X, Xu P, Zhou D, Sun Y, Li Y C, Nguyen M A, Terrones M, Mallouk T E 2015 Nano Lett. 15 5956

    [15]

    Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z 2014 Adv. Mater. 26 6467

    [16]

    Wang L, Xu Z, Wang W, Bai X 2014 J. Am. Chem. Soc. 136 6693

    [17]

    Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214

    [18]

    Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 J. Phys. Chem. C 118 1515

    [19]

    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124

    [20]

    Moses P G, Mortensen J J, Lundqvist B I, Norskov J K 2009 J. Chem. Phys. 130 104709

    [21]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Dion M, Rydberg H, Schrer E, Langreth D C, Lundqvist B I 2004 Phys. Rev. Lett. 92 246401

    [26]

    Klime J, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317

    [29]

    Kaasbjerg K, Thygesen K S, Jauho A P 2013 Phys. Rev. B 87 235312

    [30]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72

    [31]

    Fei R, Yang L 2014 Nano Lett. 14 2884

    [32]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z G 2009 J. Am. Chem. Soc. 131 17728

    [33]

    Cai Y, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269

    [34]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [35]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102

    [36]

    Tang Q, Jiang D E 2015 Chem. Mater. 27 3743

    [37]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815

    [38]

    Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G 2011 J. Phys. Chem. C 115 24586

  • [1] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [2] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [3] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [4] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究. 物理学报, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [5] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [6] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [8] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [9] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [10] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [11] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [12] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [13] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [14] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [15] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [16] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响. 物理学报, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
计量
  • 文章访问数:  4526
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-06-05

单层二硫化钼多相性质及相变的第一性原理研究

  • 1. 国防科学技术大学, 高性能计算国家重点实验室, 长沙 410072;
  • 2. 国防科学技术大学计算机学院, 长沙 410072;
  • 3. 湘潭大学物理与光电工程学院, 湘潭 411005
  • 通信作者: 方粮, lfang@nudt.edu.cn
    基金项目: 国家自然科学基金重点项目(批准号: 61332003)、国家自然科学基金(批准号: 11274265) 和高性能计算国家重点实验室课题基金(批准号: 201501-02)资助的课题.

摘要: 本文基于密度泛函的第一性原理, 并引入范德瓦耳斯力修正, 研究了单层二硫化钼2H, 1T, ZT三种相的电学性质及相变原理. 首先通过结构弛豫确定了三种相的几何结构, 能带和态密度计算证实1T相具有金属性质, ZT相具有半导体性质, 带隙为0.01 eV. 然后结合变形势理论计算了2H和ZT相的迁移率, ZT相的迁移率高达104 cm2V-1s-1, 进一步拓展了单层二硫化钼的应用范围. 最后通过对比三种相吸附锂原子结合能, 计算2H-1T相变能量曲线, 解释了引起二硫化钼相变的原因. 本文的研究结果将对单层二硫化钼实验制备表征以及相关光电器件性能分析提供重要参考.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回