搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反射式变掺杂负电子亲和势GaN光电阴极量子效率研究

乔建良 徐源 高有堂 牛军 常本康

引用本文:
Citation:

反射式变掺杂负电子亲和势GaN光电阴极量子效率研究

乔建良, 徐源, 高有堂, 牛军, 常本康

Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode

Qiao Jian-Liang, Xu Yuan, Gao You-Tang, Niu Jun, Chang Ben-Kang
PDF
导出引用
  • 从变掺杂负电子亲和势(NEA)GaN光电阴极材料的光电发射机理入手,给出了反射式变掺杂NEA GaN光电阴极内建电场和量子效率的计算公式.利用初步设计的变掺杂NEA GaN光电阴极,介绍了变掺杂NEA GaN阴极的激活过程和激活光电流的变化特点.结合国内外典型的变掺杂NEA GaN阴极的量子效率曲线,分析了GaN光电阴极量子效率曲线的特点.结果显示:由于内建电场的存在,反射式变掺杂NEA GaN光电阴极量子效率在240 nm处即可达到56%,在较宽的入射光波长范围内,阴极具有相对平稳的量子效率,量子效率值随入射光子能量的增加而增加,并且量子效率曲线在阈值附近表现出了明显的锐截止特性.
    As a new kind of ultraviolet photocathode material, the negative-electron-affinity (NEA) GaN photocathode needs to further improve its photoemission performance and the stable performance in practical applications. Under the limit of GaN photocathode material growth level, how to further improve the quantum efficiency of cathode is an important problem. The varied doping technology can help to solve the problem under such circumstances. According to the photoemission mechanism of varying doping NEA GaN photocathode material, the built-in electric field formulas and the quantum efficiency formulas for reflection-mode varied doping NEA GaN photocathode are given. The preliminary structure of varied doping NEA GaN photocathode is designed. The varied doping material sample is divided into four layers according to the doping concentration. Using the self-developed experimental equipment, the varied doping GaN photocathode sample is activated with Cs/O. The activation process and the change characteristics of photocurrent for varied doping NEA GaN photocathode are discussed. At the beginning, the photocurrent is increased steady with the introduction of Cs, then the Cs kill phenomenon appears in the presence of excessive Cs. After the introduction of O, the photocurrent value starts to rise again. The spectral response of varied doping GaN photocathode is tested in situ after activation, and the quantum efficiency values ranging from 240 nm to 354 nm are obtained. On the basis of the obtained experimental results of quantum efficiency, combining to the typical quantum efficiency curve from University of California, the characteristics of quantum efficiency curves are analyzed. The results show that the quantum efficiency value for reflection-mode varied doping NEA GaN photocathode can reach 56% at 240 nm because of the built-in electric field, yet the quantum efficiency maximum value for uniform doping GaN photocathode is only 37% at 230 nm. The tested quantum efficiency maximum value of varied doping NEA GaN photocathode is improved much more than that of the uniform doping GaN photocathode. In a wider range of the incident light wavelength, the quantum efficiency of varied doping NEA GaN photocathode is relatively stable, and the excellent properties of varied doping GaN photocathode are confirmed. The reason why the value of quantum efficiency decreases with the increase of incident light wavelength is given. First, the photon energy decreases with the increase of incident light wavelength. Second, the incident light is absorbed from the front surface of cathode for reflection mode. In addition, the quantum efficiency curves of varied doping GaN photocathode show obvious sharp cut-off characteristics near the threshold, and the sharp cut-off characteristic is necessary for high detection sensitivity. The property of negative electron affinity for varied doping GaN cathode material after successful activation is also proved by the sharp cut-off feature.
      通信作者: 乔建良, qjlqsy@sohu.com
    • 基金项目: 国家自然科学基金(批准号:61371058)资助的课题.
      Corresponding author: Qiao Jian-Liang, qjlqsy@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61371058).
    [1]

    Yang Y F, Fu R G, Ma L, Wang X H, Zhang Y J 2012 Acta Phys. Sin. 61 128504 (in Chinese) [杨永富, 富容国, 马力, 王晓晖, 张益军 2012 物理学报 61 128504]

    [2]

    Machuca F 2003 Ph. D. Dissertation (Stanford: Stanford University)

    [3]

    Wang X H, Shi F, Guo H, Hu C L, Cheng H C, Chang B K, Ren L, Du Y J, Zhang J J 2012 Chin. Phys. B 21 087901

    [4]

    Du X Q, Tian J, Zhou Q F 2011 Spectroscop. Spect. Anal. 31 1606 (in Chinese) [杜晓晴, 田健, 周强富 2011 光谱学与光谱分析 31 1606]

    [5]

    Zhang Y J, Niu J, Zhao J, Xiong Y J, Ren L, Chang B K, Qian Y S 2011 Chin. Phys. B 20 118501

    [6]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys. B 18 4541

    [7]

    Li B, Chang B K, Xu Y, Du X Q, Du Y J, Fu X Q, Wang X H, Zhang J J 2011 Spectroscop. Spect. Anal. 31 2036 (in Chinese) [李飙, 常本康, 徐源, 杜晓晴, 杜玉杰, 付小倩, 王晓晖, 张俊举 2011 光谱学与光谱分析 31 2036]

    [8]

    Niu J, Qiao J L, Chang B K, Yang Z, Zhang Y J 2009 Spectroscop. Spect. Anal. 29 3007 (in Chinese) [牛军, 乔建良, 常本康, 杨智, 张益军 2009 光谱学与光谱分析 29 3007]

    [9]

    Yang Z, Chang B, Zou J, Qiao J, Gao P, Zeng Y, Li H 2007 Appl. Opt. 46 7035

    [10]

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese) [邹继军, 常本康, 杨智 2007 物理学报 56 2992]

    [11]

    Hao G H, Chang B K, Chen X L, Wang X H, Zhao J, Xu Y, Jin M C 2013 Acta Phys. Sin. 62 097901 (in Chinese) [郝广辉, 常本康, 陈鑫龙, 王晓晖, 赵静, 徐源, 金睦淳 2013 物理学报 62 097901]

    [12]

    Wang X H, Chang B K, Zhang Y J, Hou R L, Xiong Y J 2011 Spectroscop. Spect. Anal. 31 2655 (in Chinese) [王晓晖, 常本康, 张益军, 侯瑞丽, 熊雅娟 2011 光谱学与光谱分析 31 2655]

    [13]

    Li B 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [李飙 2013 博士学位论文(南京: 南京理工大学)]

    [14]

    Wang X H 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王晓晖 2013 博士学位论文(南京: 南京理工大学)]

    [15]

    Siegmund O H W, Tremsin A S, Vallerga J V, McPhate J B, Hull J S, Malloy J, Dabiran A M 2008 Proc. SPIE 7021 70211B

    [16]

    Siegmund O, Vallerga J, McPhate J, Malloy J, Tremsin A, Martin A, Ulmer M, Wessels B 2006 Nucl. Instrum. Meth. Phys. Res. A 567 89

  • [1]

    Yang Y F, Fu R G, Ma L, Wang X H, Zhang Y J 2012 Acta Phys. Sin. 61 128504 (in Chinese) [杨永富, 富容国, 马力, 王晓晖, 张益军 2012 物理学报 61 128504]

    [2]

    Machuca F 2003 Ph. D. Dissertation (Stanford: Stanford University)

    [3]

    Wang X H, Shi F, Guo H, Hu C L, Cheng H C, Chang B K, Ren L, Du Y J, Zhang J J 2012 Chin. Phys. B 21 087901

    [4]

    Du X Q, Tian J, Zhou Q F 2011 Spectroscop. Spect. Anal. 31 1606 (in Chinese) [杜晓晴, 田健, 周强富 2011 光谱学与光谱分析 31 1606]

    [5]

    Zhang Y J, Niu J, Zhao J, Xiong Y J, Ren L, Chang B K, Qian Y S 2011 Chin. Phys. B 20 118501

    [6]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys. B 18 4541

    [7]

    Li B, Chang B K, Xu Y, Du X Q, Du Y J, Fu X Q, Wang X H, Zhang J J 2011 Spectroscop. Spect. Anal. 31 2036 (in Chinese) [李飙, 常本康, 徐源, 杜晓晴, 杜玉杰, 付小倩, 王晓晖, 张俊举 2011 光谱学与光谱分析 31 2036]

    [8]

    Niu J, Qiao J L, Chang B K, Yang Z, Zhang Y J 2009 Spectroscop. Spect. Anal. 29 3007 (in Chinese) [牛军, 乔建良, 常本康, 杨智, 张益军 2009 光谱学与光谱分析 29 3007]

    [9]

    Yang Z, Chang B, Zou J, Qiao J, Gao P, Zeng Y, Li H 2007 Appl. Opt. 46 7035

    [10]

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese) [邹继军, 常本康, 杨智 2007 物理学报 56 2992]

    [11]

    Hao G H, Chang B K, Chen X L, Wang X H, Zhao J, Xu Y, Jin M C 2013 Acta Phys. Sin. 62 097901 (in Chinese) [郝广辉, 常本康, 陈鑫龙, 王晓晖, 赵静, 徐源, 金睦淳 2013 物理学报 62 097901]

    [12]

    Wang X H, Chang B K, Zhang Y J, Hou R L, Xiong Y J 2011 Spectroscop. Spect. Anal. 31 2655 (in Chinese) [王晓晖, 常本康, 张益军, 侯瑞丽, 熊雅娟 2011 光谱学与光谱分析 31 2655]

    [13]

    Li B 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [李飙 2013 博士学位论文(南京: 南京理工大学)]

    [14]

    Wang X H 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王晓晖 2013 博士学位论文(南京: 南京理工大学)]

    [15]

    Siegmund O H W, Tremsin A S, Vallerga J V, McPhate J B, Hull J S, Malloy J, Dabiran A M 2008 Proc. SPIE 7021 70211B

    [16]

    Siegmund O, Vallerga J, McPhate J, Malloy J, Tremsin A, Martin A, Ulmer M, Wessels B 2006 Nucl. Instrum. Meth. Phys. Res. A 567 89

计量
  • 文章访问数:  3393
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-23
  • 刊出日期:  2017-03-05

反射式变掺杂负电子亲和势GaN光电阴极量子效率研究

  • 1. 南阳理工学院电子与电气工程学院, 南阳 473004;
  • 2. 南京理工大学电子工程与光电技术学院, 南京 210094
  • 通信作者: 乔建良, qjlqsy@sohu.com
    基金项目: 国家自然科学基金(批准号:61371058)资助的课题.

摘要: 从变掺杂负电子亲和势(NEA)GaN光电阴极材料的光电发射机理入手,给出了反射式变掺杂NEA GaN光电阴极内建电场和量子效率的计算公式.利用初步设计的变掺杂NEA GaN光电阴极,介绍了变掺杂NEA GaN阴极的激活过程和激活光电流的变化特点.结合国内外典型的变掺杂NEA GaN阴极的量子效率曲线,分析了GaN光电阴极量子效率曲线的特点.结果显示:由于内建电场的存在,反射式变掺杂NEA GaN光电阴极量子效率在240 nm处即可达到56%,在较宽的入射光波长范围内,阴极具有相对平稳的量子效率,量子效率值随入射光子能量的增加而增加,并且量子效率曲线在阈值附近表现出了明显的锐截止特性.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回