搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究

尤明慧 李雪 李士军 刘国军

引用本文:
Citation:

晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究

尤明慧, 李雪, 李士军, 刘国军

Growth of lattice matched InAs/AlSb superlattices by molecular beam epitaxy

You Ming-Hui, Li Xue, Li Shi-Jun, Liu Guo-Jun
PDF
HTML
导出引用
  • InAs/GaSb超晶格是量子级联激光器(quantum cascade lase, QCL)和带间级联激光器 ( interband cascade lasers, ICL ) 结构中重要的组成, 特别是作为 ICL的上下超晶格波导层是由大量的超薄外延层(纳米量级)交替生长而成, 细微的晶格失配便会直接导致材料晶体质量变差, 而且每层的厚度和组分变化会强烈影响材料结构性能. 论文研究验证了 InAs/GaSb超晶格材料生长的最佳温度约在420 ℃. 通过在衬底旋转的情况下生长40周期短周期GaSb/AlSb和InAs/GaSb超晶格, 并采用XRD测量拟合获得了GaSb和AlSb层厚分别为5.448 nm和3.921 nm, 以及InAs和GaSb层厚分别为8.998 nm和13.77 nm, 误差在10%以内, 获得了 InAs/AlSb超晶格的生长最优条件. 在GaSb衬底上生长晶格匹配的40周期的InAs/AlSb超晶格波导层, 充分考虑飘逸As注入对InAs/AlSb超晶格平均晶格常数的影响, 在固定SOAK时间为3 s的条件下, 通过变化As压为1.7×10–6 mbar来调整个超晶格的平均晶格常数, 实现了其与GaSb衬底晶格匹配. 实验结果表明超晶格零阶卫星峰和GaSb衬底峰重合, 具有完美的晶格匹配, 尖锐的次阶卫星峰和重复性良好的周期结构也表明优异的超晶格材料结构质量.
    The InAs/GaSb superlattices (SPLs) is an important component of quantum cascade laser (QCL) and interband cascade laser (ICL). In particular, the upper and lower SPL waveguide layers of the ICL are alternately grown from a large number of ultra-film epitaxial layers (nm) by molecular beam epitaxy(MBE). Subtle lattice mismatch may directly lead to the deterioration of material crystal quality, and the change of thicknessand the composition of each layer will strongly affect the structural performance of device material. The optimal growth temperature of InAs/GaSb SPLs is about 420 ℃. By growing GaSb/AlSb and InAs/GaSb SPL both with 40 short periods under the substrate rotating, the thickness of GaSb layer and AlSb layer are 5.448 nm and 3.921 nm, and the thickness of InAs layer and GaSb layer are 8.998 nm and 13.77 nm, respectively. The error is within about 10%, and the optimal growth conditions of InAs/AlSb SPLs are obtained. A lattice matched 40-period InAs/AlSb superlattice waveguide layer is grown on GaSb substrate. The influence of drifting As injection on the average lattice constant of InAs/AlSb superlattice is fully considered. Under the condition of fixed SOAK time of 3 s, the As pressure is changed to 1.7 × 10–6 mbar to adjust the average lattice constants of the superlattices and achieve their matching with the GaSb substrate lattice. The experimental results show that the 0 order satellite peak of the SPL coincides with the peak of the GaSb substrate, and has a perfect lattice matching, and that the sharp second order satellite peak and the periodic structure good repeatability also indicate that the superlattice material has the excellent structural quality of the SPLs structure.
      通信作者: 刘国军, gjliu626@126.com
    • 基金项目: 海南省重点研发计划项目(批准号: ZDYF2020020)、国家自然科学基金(批准号: 62204095, 61774025)、吉林省国家外国专家局引才引智项目(批准号: L202238, LP202216)和广西机器视觉与智能控制重点实验室培育建设(厅市会商)项目(批准号: GKAD20297148)资助的课题.
      Corresponding author: Liu Guo-Jun, gjliu626@126.com
    • Funds: Project supported by the Key R&D Projects of Hainan Province, China(Grant No. ZDYF2020020), the National Natural Science Foundation of China (Grant Nos. 62204095, 61774025), Project of Talent Introduction by State Bureau of Foreign Experts of Jilin Province, China (Grant Nos. L202238, LP202216), and Construction of Guangxi Key Laboratory of Machine Vision and Intelligent Control (Province-City Cooperation) Project (Grant No. GKAD20297148).
    [1]

    Bennett B R, Magno R, Boos J B, Kruppa W, Ancona M G 2005 Solid-State Electron. 49 1875Google Scholar

    [2]

    Cerutti L, Boissier G, Grech P, Perona A, Angellier J, Rouillard Y, Kaspi R, Genty F 2006 Electron. Lett. 42 1400Google Scholar

    [3]

    Delaunay P Y, Nguyen B M, Hoffman D, Hood A, Huang E K W, Razeghi M, Tidrow M Z 2008 Appl. Phys. Lett. 92 111112Google Scholar

    [4]

    Baranov A N, Teissier R 2015 IEEE J. Sel. Top. Quantum Electron. 21 1200612

    [5]

    Cathabard O, Teissier R, Devenson J, Moreno J, Baranov A N 2010 Appl. Phys. Lett. 96 141110Google Scholar

    [6]

    Benveniste E, Vasanelli A, Delteil A, Devenson J, Teissier R, Baranov A, Andrews A M, Strasser G, Sagnes I, Sirtori C 2008 Appl. Phys. Lett. 93 131108Google Scholar

    [7]

    Nguyen V H, Loghmari Z, Philip H, Bahriz M, Baranov A N, Teissier R 2019 Photonics 6 31Google Scholar

    [8]

    Brandstetter M, Kainz M A, Zederbauer T, Krall M, Schönhuber S, Detz H, Schrenk W, Andrews A M, Strasser G, Unterrainer K 2016 Appl. Phys. Lett. 108 011109Google Scholar

    [9]

    Vurgaftman I, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Lindle J R, Meyer J R 2011 Nat. Commun. 2 585Google Scholar

    [10]

    Weih R, Kamp M, Hofling S 2013 Appl. Phys. Lett. 102 231123Google Scholar

    [11]

    Kroemer H 2004 Physica E 20 196Google Scholar

    [12]

    Li L H, Zhu J X, Chen L, Davies A G, Linfield E H 2015 Opt. Express 23 2720Google Scholar

    [13]

    Schmitz J, Wagner J, Fuchs F, Herres N, Koidl P, Ralston J D 1995 J. Cryst. Growth 150 858Google Scholar

    [14]

    Jackson E M, Boishin G I, Aifer E H, Bennett B R, Whitman L J 2004 J. Cryst. Growth 270 301Google Scholar

    [15]

    Xie Q H, Van Nostrand J E, Brown J L, Stutz C E 1999 J. Appl. Phys. 86 329Google Scholar

    [16]

    Diaz-Thomas D A, Stepanenko O, Bahriz M, Calvez S, Tournié E, Baranov A N, Almuneau G, Cerutti L 2019 Opt. Express 27 31425Google Scholar

    [17]

    Canedy C L, Abell J, Bewley W W, Aifer E H, Kim C S, Nolde J A, Kim M, Tischler J G, Lindle J R, Jackson E M, Vurgaftman I, Meyer J R 2010 J. Vac. Sci. Technol. B 28 C3G8Google Scholar

    [18]

    Haugan H J, Grazulis L, Brown G J, Mahalingam K, Tomich D H 2004 J. Cryst. Growth 261 471Google Scholar

    [19]

    Bracker A S, Yang M J, Bennett B R, Culbertson J C, Moore W J 2000 J. Cryst. Growth 220 384Google Scholar

    [20]

    尤明慧, 祝煊宇, 李雪, 李士军, 刘国军 2021 红外与毫米波学报 40 725Google Scholar

    You M H, Zhu X Y, Li X, Li S J, Liu G J 2021 J. Infrared Millim. Waves 40 725Google Scholar

    [21]

    https://lase.mer.utexas.edu/mbe.php [2022-07-09]

    [22]

    马琳, 王玉田, 庄蔚华 1992 红外与毫米波学报 11 37

    Ma L, Wang Y T, Zhunag W H 1992 J. Infrared Millim. Waves 11 37

    [23]

    https://lelpersonal.weebly.com/uploads/1/3/4/6/13462265/report.pdf (2022.07.09)

    [24]

    Bauer A, Dallner M, Herrmann A, Lehnhardt T, Kamp M, Höfling S, Worschech L, Forchel A 2010 Nanotechnology 21 455603Google Scholar

    [25]

    Tuttle G, Kroemer H, English J H 1990 J. Appl. Phys. 67 3032Google Scholar

    [26]

    Spitzer J, Höpner A, Kuball M, Cardona M, Jenichen B, Neuroth H, Brar B, Kroemer H 1995 J. Appl. Phys. 77 811Google Scholar

  • 图 1  GaSb衬底在410 ℃附近表面再构从(a) 3×到(b) 5× 转变

    Fig. 1.  The surface reconstruction of GaSb substrate changed from (a) 3× to (b) 5× at about 410 ℃.

    图 2  不同温度下生长InAs材料获得的RHEED振荡曲线

    Fig. 2.  The oscillation curves of RHEED obtained by growing InAs materials at different temperatures.

    图 3  GaSb和GaAs生长速率随Ga源炉温度的变化情况

    Fig. 3.  Variation of growth rate of GaSb and GaAs with temperature of Ga source furnace.

    图 4  采用RHEED测量获得的AlSb生长速率随源炉温度变化情况

    Fig. 4.  Variation of AlSb growth rate measured by RHEED with source furnace temperature.

    图 5  GaSb/AlSb和InAs/GaSb 40周期短周期超晶格结的XRD典型结果

    Fig. 5.  Typical results obtained from XRD measurement of 40-short period SPLs structures of GaSb/AlSb and InAs/ GaSb.

    图 6  0, 3和8 nm三个不同针阀位置生长样品的XRD曲线

    Fig. 6.  XRD curves of samples grown at three different needle valve positions of 0, 3 and 8 nm, respectively.

    图 7  AlSb和GaSb样品生长后的高分辨率XRD衍射曲线

    Fig. 7.  High resolution XRD diffraction curves of AlSb and GaSb samples after growth.

    图 8  Sb束流SOAK时间变化对超晶格平均晶格常数的影响

    Fig. 8.  Effect of time variation of Sb beam SOAK on the average lattice constant of SPLs.

    图 9  As束流变化对超晶格平均晶格常数的影响情况

    Fig. 9.  Effect of As beam variation on the average lattice constant of SPLs.

    图 10  完整高分辨率XRD曲线, 内插图为40周期InAS/AlSb结构示意图及TEM图

    Fig. 10.  The complete HRXRD curve of the sample, the inset is a schematic diagram of 40× InAs/AlSb SPLs with TEM.

  • [1]

    Bennett B R, Magno R, Boos J B, Kruppa W, Ancona M G 2005 Solid-State Electron. 49 1875Google Scholar

    [2]

    Cerutti L, Boissier G, Grech P, Perona A, Angellier J, Rouillard Y, Kaspi R, Genty F 2006 Electron. Lett. 42 1400Google Scholar

    [3]

    Delaunay P Y, Nguyen B M, Hoffman D, Hood A, Huang E K W, Razeghi M, Tidrow M Z 2008 Appl. Phys. Lett. 92 111112Google Scholar

    [4]

    Baranov A N, Teissier R 2015 IEEE J. Sel. Top. Quantum Electron. 21 1200612

    [5]

    Cathabard O, Teissier R, Devenson J, Moreno J, Baranov A N 2010 Appl. Phys. Lett. 96 141110Google Scholar

    [6]

    Benveniste E, Vasanelli A, Delteil A, Devenson J, Teissier R, Baranov A, Andrews A M, Strasser G, Sagnes I, Sirtori C 2008 Appl. Phys. Lett. 93 131108Google Scholar

    [7]

    Nguyen V H, Loghmari Z, Philip H, Bahriz M, Baranov A N, Teissier R 2019 Photonics 6 31Google Scholar

    [8]

    Brandstetter M, Kainz M A, Zederbauer T, Krall M, Schönhuber S, Detz H, Schrenk W, Andrews A M, Strasser G, Unterrainer K 2016 Appl. Phys. Lett. 108 011109Google Scholar

    [9]

    Vurgaftman I, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Lindle J R, Meyer J R 2011 Nat. Commun. 2 585Google Scholar

    [10]

    Weih R, Kamp M, Hofling S 2013 Appl. Phys. Lett. 102 231123Google Scholar

    [11]

    Kroemer H 2004 Physica E 20 196Google Scholar

    [12]

    Li L H, Zhu J X, Chen L, Davies A G, Linfield E H 2015 Opt. Express 23 2720Google Scholar

    [13]

    Schmitz J, Wagner J, Fuchs F, Herres N, Koidl P, Ralston J D 1995 J. Cryst. Growth 150 858Google Scholar

    [14]

    Jackson E M, Boishin G I, Aifer E H, Bennett B R, Whitman L J 2004 J. Cryst. Growth 270 301Google Scholar

    [15]

    Xie Q H, Van Nostrand J E, Brown J L, Stutz C E 1999 J. Appl. Phys. 86 329Google Scholar

    [16]

    Diaz-Thomas D A, Stepanenko O, Bahriz M, Calvez S, Tournié E, Baranov A N, Almuneau G, Cerutti L 2019 Opt. Express 27 31425Google Scholar

    [17]

    Canedy C L, Abell J, Bewley W W, Aifer E H, Kim C S, Nolde J A, Kim M, Tischler J G, Lindle J R, Jackson E M, Vurgaftman I, Meyer J R 2010 J. Vac. Sci. Technol. B 28 C3G8Google Scholar

    [18]

    Haugan H J, Grazulis L, Brown G J, Mahalingam K, Tomich D H 2004 J. Cryst. Growth 261 471Google Scholar

    [19]

    Bracker A S, Yang M J, Bennett B R, Culbertson J C, Moore W J 2000 J. Cryst. Growth 220 384Google Scholar

    [20]

    尤明慧, 祝煊宇, 李雪, 李士军, 刘国军 2021 红外与毫米波学报 40 725Google Scholar

    You M H, Zhu X Y, Li X, Li S J, Liu G J 2021 J. Infrared Millim. Waves 40 725Google Scholar

    [21]

    https://lase.mer.utexas.edu/mbe.php [2022-07-09]

    [22]

    马琳, 王玉田, 庄蔚华 1992 红外与毫米波学报 11 37

    Ma L, Wang Y T, Zhunag W H 1992 J. Infrared Millim. Waves 11 37

    [23]

    https://lelpersonal.weebly.com/uploads/1/3/4/6/13462265/report.pdf (2022.07.09)

    [24]

    Bauer A, Dallner M, Herrmann A, Lehnhardt T, Kamp M, Höfling S, Worschech L, Forchel A 2010 Nanotechnology 21 455603Google Scholar

    [25]

    Tuttle G, Kroemer H, English J H 1990 J. Appl. Phys. 67 3032Google Scholar

    [26]

    Spitzer J, Höpner A, Kuball M, Cardona M, Jenichen B, Neuroth H, Brar B, Kroemer H 1995 J. Appl. Phys. 77 811Google Scholar

  • [1] 杜安天, 刘若涛, 曹春芳, 韩实现, 王海龙, 龚谦. 利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计. 物理学报, 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [2] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控. 物理学报, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [3] 李更, 郭辉, 高鸿钧. 超高真空构筑新型二维材料及其异质结构. 物理学报, 2022, 71(10): 106801. doi: 10.7498/aps.71.20212407
    [4] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [5] 任舰, 苏丽娜, 李文佳. 晶格匹配In0.17Al0.83N/GaN异质结电容散射机制. 物理学报, 2018, 67(24): 247202. doi: 10.7498/aps.67.20181050
    [6] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [7] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长. 物理学报, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [8] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [9] 杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权. 基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究. 物理学报, 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [10] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [11] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性. 物理学报, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [12] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究. 物理学报, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [13] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [14] 赵明海, 孙静静, 王丹, 邹志强, 梁齐. C60分子在Si(111)-7×7表面分子束外延生长的STM研究. 物理学报, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [15] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [16] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [17] 李志华, 王文新, 刘林生, 蒋中伟, 高汉超, 周均铭. As保护下的生长中断时间对AlSb/InAs超晶格界面粗糙度的影响. 物理学报, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [18] 徐晓华, 牛智川, 倪海桥, 徐应强, 张 纬, 贺正宏, 韩 勤, 吴荣汉, 江德生. 分子束外延生长的(GaAs1-xSbx/InyGa1-yAs)/GaAs量子阱光致发光谱研究. 物理学报, 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
    [19] 王晓平, 谢 峰, 石勤伟, 赵特秀. 晶格失配对异质外延超薄膜生长中成核特性的影响. 物理学报, 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  5297
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 修回日期:  2022-09-12
  • 上网日期:  2022-10-12
  • 刊出日期:  2023-01-05

/

返回文章
返回