搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菲涅尔衍射光刻

蒋忠君 何伟 陈经纬 罗丹洋 杨帆 蒋凯 王亮

引用本文:
Citation:

菲涅尔衍射光刻

蒋忠君, 何伟, 陈经纬, 罗丹洋, 杨帆, 蒋凯, 王亮

Fresnel diffraction lithography

Jiang Zhong-Jun, He Wei, Chen Jing-Wei, Luo Dan-Yang, Yang Fan, Jiang Kai, Wang Liang
PDF
HTML
导出引用
  • 通过合理选取等间距采样点的数目, 利用快速傅里叶变换算法解释了有限通光光阑产生的“内密外疏”菲涅尔衍射条纹. 基于菲涅尔衍射, 在静态曝光、动态扫描条件下分别实现了约190 nm最小特征尺寸图形制备, 以及约350 nm线宽线条直写. 菲涅尔衍射光刻无需复杂的光学透镜组合, 无需任何微纳衍射光学元件, 且具有较大的聚焦容差. 该方法有望成为一种新型的, 低成本、高灵活度的亚波长图形制备手段.
    Lithography plays a vital important role in modern information technologies. Patterning on a nanoscale in a handy way is highly desired for both scientific and industrial purposes. In this work, we propose a convenient nanolithography method based on Fresnel diffraction patterns. We start with the explanation of the “dense-inside-sparse-outside” Fresnel diffraction fringes resulting from the apertures of finite extent, by using the fast Fourier transform algorithm through appropriately choosing the number of uniformly spaced samples. Moderately focusing the diffraction patterns via high-numerical-aperture objectives ( the method is termed the “Fresnel diffraction lithography”), the rotationally symmetric patterns with a minimum feature size of ~190 nm, and the scanning lines with a width of ~350 nm are realized, respectively, The calculation using vectorial diffraction theory suggests a better resolution when perfectly focused. This method shows good tolerance to defocus and does not require complex lens combinations or micro/nano-diffraction optical elements, Therefore, this method can find some applications in widespread areas, e.g. functional metasurfaces, as a novel and low-cost nano-patterning technology with sub-wavelength resolution and high flexibility.
      通信作者: 王亮, lwang121@ustc.edu.cn
    • 基金项目: 安徽省重点研究与开发计划(批准号: 202004A05020077)资助的课题.
      Corresponding author: Wang Liang, lwang121@ustc.edu.cn
    • Funds: Project supported by the Key R&D Program of Anhui Province (Grant No. 202004A05020077).
    [1]

    Menon R, Patel A, Gil D, Smith H I 2005 Mater. Today 8 26Google Scholar

    [2]

    Xu K, Qin J, Wang L 2021 Opt. Lett. 46 5185Google Scholar

    [3]

    Sanders D P 2010 Chem. Rev. 110 321Google Scholar

    [4]

    School J S, Schenau K I, Valentin C, Migura S 2015 Proc. SPIE 9422, Extreme Ultraviolet (EUV) Lithography VI San Jose, California, United States, March 16, 2015 p94221F

    [5]

    Chen Y F 2015 Microelectron. Eng. 135 57Google Scholar

    [6]

    Langford R M, Nellen P M, Gierak J, Fu Y 2007 MRS Bull. 32 417Google Scholar

    [7]

    Traub M C, Longsine W, Truskett V N 2016 Annu. Rev. Chem. Biomol. Eng. 7 583Google Scholar

    [8]

    Seino Y, Yonemitsu H, Sato H, Kanno M, Kato H, Kobayashi K, Kawanishi A, Azuma T, Muramatsu M, Nagahara S, Kitano T, Toshima T 2013 J. Micro-Nanolitho. Mems. Moems. 12 033011Google Scholar

    [9]

    Jiang Z, Liu Y, Liang W 2022 Opto-Electron. Sci. 1 210004Google Scholar

    [10]

    Jiang Z J, Luo H W, Guo S P, Wang L 2019 Opt. Lett. 44 783Google Scholar

    [11]

    李小宝, 王春晖, 曲扬, 任逍遥 2015 激光与光电子学进展 52 6Google Scholar

    Li X B, Wang C H, Qu Y, Ren X Y 2015 Laser Optoelectron. Prog. 52 6Google Scholar

    [12]

    顾敏芬, 梁忠诚 2000 南京师大学报(自然科学版) 23 4Google Scholar

    Gu M F, Liang Z C 2000 J. Nanjing Normal Univ. (Nat. Sci.) 23 4Google Scholar

    [13]

    Kelly D P 2014 J. Opt. Soc. Am. A: 31 755

    [14]

    Mas D, Perez J, Hernandez C, Vazquez C, Miret J J, Illueca C 2003 Opt. Commun. 227 245Google Scholar

    [15]

    古德曼 J W 著 (秦克诚 刘培森 陈嘉璧 曹其智译) 2011 傅里叶光学导论(第3版) (北京: 电子工业出版社) 第48, 49页

    Goodman J W 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp48, 49 (in chinese)

    [16]

    Zhang W, Zhang H, Sheppard C J R, Jin G 2020 J. Opt. Soc. Am. A 37 1748Google Scholar

    [17]

    Lee K G, Kihm H W, Kihm J E, Choi W J, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S 2006 Nat. Photonics 1 53Google Scholar

    [18]

    Liu T, Tan J, Liu J, Wang H 2013 Opt. Express 21 15090Google Scholar

    [19]

    Kim J, Wang Y, Zhang X 2018 J Opt. Soc. Am. A 35 526Google Scholar

    [20]

    刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明 2020 物理学报 69 184215Google Scholar

    Liu K, He T, Liu T, Li G Q, Tian B, Wang J Y, Yang S M 2020 Acta Phys. Sin. 69 184215Google Scholar

    [21]

    Wolf E 1959 Proc. R. Soc. London, Ser. A 253 349Google Scholar

    [22]

    Hu Y, Wang Z, Wang X, Ji S, Zhang C, Li J, Zhu W, Wu D, Chu J 2020 Light Sci. Appl. 9 119Google Scholar

    [23]

    Born M, Wolf E 1999 Principles of Optics (7th Ed.) (Cambridge: Cambridge University Press)

    [24]

    Bluestein L 1970 IEEE Trans. Audio Electroacoust. 18 451Google Scholar

    [25]

    Rabiner L, Schafer R, Rader C 1969 IEEE Trans. Audio Electroacoust. 17 86Google Scholar

    [26]

    刘涛 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in chinese)

  • 图 1  实验光路图

    Fig. 1.  Illustration of experimental optical set-up.

    图 2  不同位置处光斑照片 (a) 激光器出射光斑, 呈非规则形; (b) 滤波扩束后光斑, 呈艾里斑状

    Fig. 2.  Optical spots at different positions: (a) Laser spot; (b) the expanded and filtered optical beam.

    图 3  光阑后方菲涅尔衍射图案 (a), (b) 距离8 mm孔径光阑8 cm处的衍射图案照片(a)及理论计算(b); (c), (d) 分别为图(a)和图(b)的局部细节; (e), (f) 距离5 mm孔径光阑9.5 cm处的衍射图案照片(e)及理论计算(f)

    Fig. 3.  Fresnel diffraction patterns behind the aperture: (a) The captured and (b) calculated images at 8 cm away from an 8-mm-diameter aperture. Zoomed-in images of Figure (a) and Figure (b) are respectively shown in Figure (c) and Figure (d). Optical spots at different positions. Also shown are the captured (e) and calculated (f) images at 9.5 cm away from a 5-mm-diameter aperture.

    图 4  菲涅尔衍射光刻示意图 (a), (b) 计算得到的直径6 mm光阑后方20 cm处菲涅尔衍射图案(a)及其中心附近放大细节(b); (c)菲涅尔衍射光刻实验示意图

    Fig. 4.  Set-up for Fresnel diffraction lithography: (a), (b) The simulated Fresnel diffraction pattern(a) at a distance of 20 cm behind a 6 mm-aperture and its zoomed-in image near the center (b); (c) depiction of the lithography apparatus.

    图 5  菲涅尔衍射静态光刻 (a)—(d) 油镜与样品间距g时的静态光刻图形OM照片(a), UV-OM照片(b), AFM图像(c)及表面形貌(d); (e)—(h) 油镜与样品间距g – 0.2 mm时的静态光刻图形OM照片(e), UV-OM照片(f), AFM图像(g)及表面形貌(h)

    Fig. 5.  Fresnel diffraction lithography results: (a)–(d) The captured OM (a)/(e), UV-OM (b)/(f) and AFM (c)/(g) images obtained when the lens-sample distance is g/g – 0.2 mm. Also shown are the line profiles (d), (h) at positions indicated by blue and green solid lines in Figure (c) and Figure (g), respectively.

    图 6  菲涅尔衍射扫描光刻 (a)—(d) 油镜与样品间距g时扫描速度100 μm/s ((a), (b)), 200 μm/s((c), (d))的动态光刻图形UV-OM照片; (e)—(h) 油镜与样品间距g – 0.2 mm时扫描速度为100((e), (f))和200 μm/s((g), (h))的动态光刻图形UV-OM照片; (i), (j) 油镜与样品间距g, g – 0.2 mm时扫描速度100 μm/s所得图形的AFM图像. 比例尺均为5 μm

    Fig. 6.  Fresnel diffraction scanning lithography: (a)–(h) With the scanning speed of 100 and 200 μm/s, the captured UV-OM ((a)–(d), (e)–(h)) images obtained when the lens-sample distance is g and g – 0.2 mm, respectively. Also shown are the AFM images (i), (j) with a scanning speed of 100 μm/s at g and g – 0.2 mm, respectively. Scale bars: 5 μm

    图 7  矢量衍射理论计算得到的油镜焦点处光场分布(a)及其在x, y方向上的半高全宽信息((b), (c)); (d)对数尺度上焦平面光场分布

    Fig. 7.  Calculated light field distribution on the focal plane of oil immersion objectives (a) along with the full width at half maximum in x- (b) and y-direction (c) using vectorial diffraction theory. (d) Focused light distribution plotted on a log scale.

  • [1]

    Menon R, Patel A, Gil D, Smith H I 2005 Mater. Today 8 26Google Scholar

    [2]

    Xu K, Qin J, Wang L 2021 Opt. Lett. 46 5185Google Scholar

    [3]

    Sanders D P 2010 Chem. Rev. 110 321Google Scholar

    [4]

    School J S, Schenau K I, Valentin C, Migura S 2015 Proc. SPIE 9422, Extreme Ultraviolet (EUV) Lithography VI San Jose, California, United States, March 16, 2015 p94221F

    [5]

    Chen Y F 2015 Microelectron. Eng. 135 57Google Scholar

    [6]

    Langford R M, Nellen P M, Gierak J, Fu Y 2007 MRS Bull. 32 417Google Scholar

    [7]

    Traub M C, Longsine W, Truskett V N 2016 Annu. Rev. Chem. Biomol. Eng. 7 583Google Scholar

    [8]

    Seino Y, Yonemitsu H, Sato H, Kanno M, Kato H, Kobayashi K, Kawanishi A, Azuma T, Muramatsu M, Nagahara S, Kitano T, Toshima T 2013 J. Micro-Nanolitho. Mems. Moems. 12 033011Google Scholar

    [9]

    Jiang Z, Liu Y, Liang W 2022 Opto-Electron. Sci. 1 210004Google Scholar

    [10]

    Jiang Z J, Luo H W, Guo S P, Wang L 2019 Opt. Lett. 44 783Google Scholar

    [11]

    李小宝, 王春晖, 曲扬, 任逍遥 2015 激光与光电子学进展 52 6Google Scholar

    Li X B, Wang C H, Qu Y, Ren X Y 2015 Laser Optoelectron. Prog. 52 6Google Scholar

    [12]

    顾敏芬, 梁忠诚 2000 南京师大学报(自然科学版) 23 4Google Scholar

    Gu M F, Liang Z C 2000 J. Nanjing Normal Univ. (Nat. Sci.) 23 4Google Scholar

    [13]

    Kelly D P 2014 J. Opt. Soc. Am. A: 31 755

    [14]

    Mas D, Perez J, Hernandez C, Vazquez C, Miret J J, Illueca C 2003 Opt. Commun. 227 245Google Scholar

    [15]

    古德曼 J W 著 (秦克诚 刘培森 陈嘉璧 曹其智译) 2011 傅里叶光学导论(第3版) (北京: 电子工业出版社) 第48, 49页

    Goodman J W 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp48, 49 (in chinese)

    [16]

    Zhang W, Zhang H, Sheppard C J R, Jin G 2020 J. Opt. Soc. Am. A 37 1748Google Scholar

    [17]

    Lee K G, Kihm H W, Kihm J E, Choi W J, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S 2006 Nat. Photonics 1 53Google Scholar

    [18]

    Liu T, Tan J, Liu J, Wang H 2013 Opt. Express 21 15090Google Scholar

    [19]

    Kim J, Wang Y, Zhang X 2018 J Opt. Soc. Am. A 35 526Google Scholar

    [20]

    刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明 2020 物理学报 69 184215Google Scholar

    Liu K, He T, Liu T, Li G Q, Tian B, Wang J Y, Yang S M 2020 Acta Phys. Sin. 69 184215Google Scholar

    [21]

    Wolf E 1959 Proc. R. Soc. London, Ser. A 253 349Google Scholar

    [22]

    Hu Y, Wang Z, Wang X, Ji S, Zhang C, Li J, Zhu W, Wu D, Chu J 2020 Light Sci. Appl. 9 119Google Scholar

    [23]

    Born M, Wolf E 1999 Principles of Optics (7th Ed.) (Cambridge: Cambridge University Press)

    [24]

    Bluestein L 1970 IEEE Trans. Audio Electroacoust. 18 451Google Scholar

    [25]

    Rabiner L, Schafer R, Rader C 1969 IEEE Trans. Audio Electroacoust. 17 86Google Scholar

    [26]

    刘涛 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in chinese)

  • [1] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [2] 查冰婷, 袁海璐, 马少杰, 陈光宋. 单光束扩束扫描激光周视探测系统参数对探测能力的影响. 物理学报, 2019, 68(7): 070601. doi: 10.7498/aps.68.20181860
    [3] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制. 物理学报, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [4] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻. 物理学报, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [5] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [6] 黄成龙, 张继成, 刁凯迪, 曾勇, 易勇, 曹磊峰, 王红斌. 单级衍射量子点阵光栅的聚焦离子束直写法制备及光学性能检测. 物理学报, 2014, 63(1): 018101. doi: 10.7498/aps.63.018101
    [7] 陈修国, 刘世元, 张传维, 吴懿平, 马智超, 孙堂友, 徐智谋. 基于Mueller矩阵椭偏仪的纳米压印模板与光刻胶光栅结构准确测量. 物理学报, 2014, 63(18): 180701. doi: 10.7498/aps.63.180701
    [8] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [9] 孙丽媛, 高志远, 邹德恕, 张露, 马莉, 田亮, 沈光地. 多台阶器件结构深层表面光刻工艺优化. 物理学报, 2012, 61(20): 206801. doi: 10.7498/aps.61.206801
    [10] 王建波, 钱进, 殷聪, 石春英, 雷鸣. 原子光刻中驻波场与基片距离的判定方法研究. 物理学报, 2012, 61(19): 190601. doi: 10.7498/aps.61.190601
    [11] 邱克强, 刘正坤, 徐向东, 刘颖, 洪义麟, 付绍军. 全息光刻中的驻波效应研究. 物理学报, 2012, 61(1): 014204. doi: 10.7498/aps.61.014204
    [12] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [13] 钱 奇, 王 琰, 张勤远, 杨中民, 杨钢锋, 姜中宏. 可紫外激光刻写的掺铒铋硅酸盐玻璃光谱性质研究. 物理学报, 2007, 56(5): 2736-2741. doi: 10.7498/aps.56.2736
    [14] 彭 翔, 位恒政, 张 鹏. 基于菲涅耳域的双随机相位编码系统的选择明文攻击. 物理学报, 2007, 56(7): 3924-3930. doi: 10.7498/aps.56.3924
    [15] 陶卫东, 王 标. 一种改进型菲涅尔棱体的设计与分析. 物理学报, 2006, 55(3): 1126-1129. doi: 10.7498/aps.55.1126
    [16] 肖 沛, 张增明, 孙 霞, 丁泽军. 投影电子束光刻中电子穿透掩膜的Monte Carlo模拟. 物理学报, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [17] 孙 霞, 尤四方, 肖 沛, 丁泽军. 电子束光刻的邻近效应及其模拟. 物理学报, 2006, 55(1): 148-154. doi: 10.7498/aps.55.148
    [18] 陈雷明, 郭艳峰, 郭 熹, 唐为华. 改性光刻胶制备纳米压印模版. 物理学报, 2006, 55(12): 6511-6514. doi: 10.7498/aps.55.6511
    [19] 李玉同, 张 杰, 鲁 欣, 金 展, D. A. Pepler, C. N. Danson. 使用二元相位菲涅尔波带片产生轴向线聚焦. 物理学报, 2005, 54(5): 2030-2033. doi: 10.7498/aps.54.2030
    [20] 吴进远, 汪承灏, 何启光. 菲涅耳阵在固体中所产生的声束聚焦和扫描特性. 物理学报, 1988, 37(10): 1575-1584. doi: 10.7498/aps.37.1575
计量
  • 文章访问数:  5142
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-28
  • 修回日期:  2022-09-11
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-01-05

/

返回文章
返回