搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单级衍射量子点阵光栅的聚焦离子束直写法制备及光学性能检测

黄成龙 张继成 刁凯迪 曾勇 易勇 曹磊峰 王红斌

引用本文:
Citation:

单级衍射量子点阵光栅的聚焦离子束直写法制备及光学性能检测

黄成龙, 张继成, 刁凯迪, 曾勇, 易勇, 曹磊峰, 王红斌

Fabrication and optical property characterization of quantum-dot-array diffraction grating with single order diffraction based on focused ion beam

Huang Cheng-Long, Zhang Ji-Cheng, Diao Kai-Di, Zeng Yong, Yi Yong, Cao Lei-Feng, Wang Hong-Bin
PDF
导出引用
  • 采用聚焦离子束直写技术,成功制作了面积为200 μm×200 μm,线密度500 mm-1,圆孔直径800 nm,金吸收体厚度为500 nm的单级衍射量子点阵光栅. 研究了该光栅在波长442 nm激光下不同传输距离的衍射特性以及相对衍射效率. 实验结果表明,量子点阵光栅不存在高级衍射,只保留了±1级和0级衍射,具有良好的单级衍射特性. 1级衍射与0级衍射间距随传输距离的增大而增大,实测值与理论计算值相符.
    Quantum-dot-array diffraction grating(QDADG), with an area of 200 μm×200 μm, a line density of 500 line/mm, an aperture size of 800 nm and a gold absorber of 500 nm thick, is successfully fabricated by focused ion beams. The diffraction properties and relative diffraction efficiencies of QDADG are measured at different transfer distance for 442 nm laser. It is shown that the high-order diffraction is removed from the spectra with only the ±1 and 0 order diffraction lines reserved. Moreover, in accordance with the calculated values obtained using the grating equation, variations of space between the 1st order and the 0th order increase gradually with the increase of transfer distance.
    • 基金项目: 四川省非金属复合与功能材料重点实验室开放基金(批准号:11zxfk19)资助的课题.
    • Funds: Project supported by the Open Foundation of Key Laboratory for Nonmetal Composites and Functional Materials of Sichuan Province, China (Grant No. 11zxfk19).
    [1]

    Weisberg A, Craparo J, Saro R D, Pawluczyk R 2010 Appl. Opt. 49 200

    [2]

    Zou B, Chiang K S 2013 Journal of Lightwave Technology 31 2223

    [3]

    Mariën G, Jovanovi N, Cvetojevi N, Williams R, Haynes R, Lawrence J, Parker Q, Withford M J 2012 Astronomy & Astrophysics 421 3641

    [4]

    Kantsyrev V L, Baure B S, Shlyaptseva A S, Fedin D A, Hansen S, Presura R, Chamberlain D, Ouart N D, Jones A, Lebeau H 2000 SPIE 4138 203

    [5]

    Cao L F China Patent CN200410081499 [2005-07-27] (in Chinese) [曹磊峰 中国: CN200410081499 2005-07-27]

    [6]

    Cao L F, Forster E, Fuhrmann A, Wang C K, Kuang L Y 2007 Appl. Phys. Lett. 90 053501

    [7]

    David C, Bruder J, Rohbeck T, Grnzweig C, Kottler C, Diaz A, Bunk O, Pfeiffer F 2007 Microelectron. Eng. 84 1173

    [8]

    Gorelick S, Guzenko V A, Vila-Comamala J, David C 2010 Nanotechnology 21 295303

    [9]

    Luo C C, Li Y G, Susumu S 2012 Optics & Laser Technology 44 1649

    [10]

    Kong L Q, Zhang C J, Huang S L, Zhu X F 2012 Acta Phys. Sin. 61 036102 (in Chinese) [孔令琦, 张春婧, 黄胜利, 朱贤方 2012 物理学报 61 036102]

    [11]

    Sun L Y, Gao Z Y, Zou D S, Zhang L, Ma L, Tian L, Shen G D 2012 Acta Phys. Sin. 61 206801 (in Chinese) [孙丽媛, 高志远, 邹德恕, 张露, 马莉, 田亮, 沈光地 2012 物理学报 61 206801]

    [12]

    Zhao M, Zhu X L, Chen B Q, Xie C Q, Liu M, Cao L F 2007 Optical Engineering 475 058001

    [13]

    Kuang L Y, Cao L F, Zhu X L, Wu S C, Wang Z B, Wang C K, Liu S Y, Jiang S E, Yang J M, Ding Y K, Xie C Q, Zheng J 2011 Opt. Lett. 36 3954

    [14]

    Feng Y J, Cheng Q H, Wu P H 1995 Chin. Phys. 4 301

    [15]

    Zhang H B, Feng R J, Katsumi U 2003 Chin. Phys. Lett. 20 2011

    [16]

    Giannuzzi L A, Stevie F A 2004 Introduction to focused ion beams: instrumentation, theory, techniques and practice (New York: Springer Science+Business Media) pp1-12

    [17]

    Chen L M, Li P G, Fu X L, Zhang H Y, Li H L, Tang W H 2005 Acta Phys. Sin. 54 0582 (in Chinese) [陈雷明, 李培刚, 符秀丽, 张海英, Li H L, 唐为华 2005 物理学报 54 0582]

    [18]

    Gu W Q, Ma X G, Li W P 2006 Focused ion beam micro-nano fabrication technology (Beijing: Beijing Industry University Press) pp1–87 (in Chinese) [顾文琪, 马向国, 李文萍 2006 聚焦离子束微纳加工技术 (北京: 北京工业大学出版社) 第1–87页]

    [19]

    Wei L, Cao L F, Fan W, Zang H P, Gao Y L, Zhu X L, Xie C Q, Gu Y Q, Zhang B H, Wang X F 2011 High Power Laser and Particle Beams 23 387 (in Chinese) [魏来, 曹磊峰, 范伟, 臧华平, 高宇林, 朱效立, 谢长青, 谷渝秋, 张保汉, 王晓方 2011 强激光与粒子束 23 387]

  • [1]

    Weisberg A, Craparo J, Saro R D, Pawluczyk R 2010 Appl. Opt. 49 200

    [2]

    Zou B, Chiang K S 2013 Journal of Lightwave Technology 31 2223

    [3]

    Mariën G, Jovanovi N, Cvetojevi N, Williams R, Haynes R, Lawrence J, Parker Q, Withford M J 2012 Astronomy & Astrophysics 421 3641

    [4]

    Kantsyrev V L, Baure B S, Shlyaptseva A S, Fedin D A, Hansen S, Presura R, Chamberlain D, Ouart N D, Jones A, Lebeau H 2000 SPIE 4138 203

    [5]

    Cao L F China Patent CN200410081499 [2005-07-27] (in Chinese) [曹磊峰 中国: CN200410081499 2005-07-27]

    [6]

    Cao L F, Forster E, Fuhrmann A, Wang C K, Kuang L Y 2007 Appl. Phys. Lett. 90 053501

    [7]

    David C, Bruder J, Rohbeck T, Grnzweig C, Kottler C, Diaz A, Bunk O, Pfeiffer F 2007 Microelectron. Eng. 84 1173

    [8]

    Gorelick S, Guzenko V A, Vila-Comamala J, David C 2010 Nanotechnology 21 295303

    [9]

    Luo C C, Li Y G, Susumu S 2012 Optics & Laser Technology 44 1649

    [10]

    Kong L Q, Zhang C J, Huang S L, Zhu X F 2012 Acta Phys. Sin. 61 036102 (in Chinese) [孔令琦, 张春婧, 黄胜利, 朱贤方 2012 物理学报 61 036102]

    [11]

    Sun L Y, Gao Z Y, Zou D S, Zhang L, Ma L, Tian L, Shen G D 2012 Acta Phys. Sin. 61 206801 (in Chinese) [孙丽媛, 高志远, 邹德恕, 张露, 马莉, 田亮, 沈光地 2012 物理学报 61 206801]

    [12]

    Zhao M, Zhu X L, Chen B Q, Xie C Q, Liu M, Cao L F 2007 Optical Engineering 475 058001

    [13]

    Kuang L Y, Cao L F, Zhu X L, Wu S C, Wang Z B, Wang C K, Liu S Y, Jiang S E, Yang J M, Ding Y K, Xie C Q, Zheng J 2011 Opt. Lett. 36 3954

    [14]

    Feng Y J, Cheng Q H, Wu P H 1995 Chin. Phys. 4 301

    [15]

    Zhang H B, Feng R J, Katsumi U 2003 Chin. Phys. Lett. 20 2011

    [16]

    Giannuzzi L A, Stevie F A 2004 Introduction to focused ion beams: instrumentation, theory, techniques and practice (New York: Springer Science+Business Media) pp1-12

    [17]

    Chen L M, Li P G, Fu X L, Zhang H Y, Li H L, Tang W H 2005 Acta Phys. Sin. 54 0582 (in Chinese) [陈雷明, 李培刚, 符秀丽, 张海英, Li H L, 唐为华 2005 物理学报 54 0582]

    [18]

    Gu W Q, Ma X G, Li W P 2006 Focused ion beam micro-nano fabrication technology (Beijing: Beijing Industry University Press) pp1–87 (in Chinese) [顾文琪, 马向国, 李文萍 2006 聚焦离子束微纳加工技术 (北京: 北京工业大学出版社) 第1–87页]

    [19]

    Wei L, Cao L F, Fan W, Zang H P, Gao Y L, Zhu X L, Xie C Q, Gu Y Q, Zhang B H, Wang X F 2011 High Power Laser and Particle Beams 23 387 (in Chinese) [魏来, 曹磊峰, 范伟, 臧华平, 高宇林, 朱效立, 谢长青, 谷渝秋, 张保汉, 王晓方 2011 强激光与粒子束 23 387]

计量
  • 文章访问数:  2339
  • PDF下载量:  1011
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-13
  • 修回日期:  2013-09-18
  • 刊出日期:  2014-01-05

单级衍射量子点阵光栅的聚焦离子束直写法制备及光学性能检测

  • 1. 西南科技大学,四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地, 绵阳 621010;
  • 2. 西南科技大学, 极端条件物质特性实验室, 绵阳 621010;
  • 3. 中国工程物理研究院, 激光聚变研究中心, 绵阳 621900
    基金项目: 

    四川省非金属复合与功能材料重点实验室开放基金(批准号:11zxfk19)资助的课题.

摘要: 采用聚焦离子束直写技术,成功制作了面积为200 μm×200 μm,线密度500 mm-1,圆孔直径800 nm,金吸收体厚度为500 nm的单级衍射量子点阵光栅. 研究了该光栅在波长442 nm激光下不同传输距离的衍射特性以及相对衍射效率. 实验结果表明,量子点阵光栅不存在高级衍射,只保留了±1级和0级衍射,具有良好的单级衍射特性. 1级衍射与0级衍射间距随传输距离的增大而增大,实测值与理论计算值相符.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回