搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米压印多孔硅模板的研究

张铮 徐智谋 孙堂友 徐海峰 陈存华 彭静

引用本文:
Citation:

纳米压印多孔硅模板的研究

张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静

Study on porous silicon template for nanoimprint lithography

Zhang Zheng, Xu Zhi-Mou, Sun Tang-You, Xu Hai-Feng, Chen Cun-Hua, Peng Jing
PDF
导出引用
  • 纳米压印模板通常采用极紫外光刻、聚焦离子束光刻和电子束光刻等传统光刻技术制备,成本较高. 寻找一种简单、低成本的纳米压印模板制备方法以提升纳米压印光刻技术的应用成为研究的重点与难点. 本文以多孔氧化铝为母模板,采用纳米压印光刻技术对纳米多孔硅模板的制备进行了研究. 在硅基表面成功制备出纳米多孔阵列结构,孔间距为350–560 nm,孔径在170–480 nm,孔深为200 nm. 在激发波长为514 nm时,拉曼光谱的测试结果表明,相对于单面抛光的硅片,纳米多孔结构的硅模板拉曼光强有了约12倍左右的提升,对提升硅基光电器件的应用具有重要的意义. 最后,利用多孔硅模板作为纳米压印母模板,通过热压印技术,成功制备出了聚合物纳米柱软模板.
    The template for naoimprint lithography having a nano-sized structure was usually fabricated by traditional lithography such as extreme ultraviolet (EUV) lithography, focused ion beam (FIB) lithography, electron beam (EB) lithography. However, these approaches are always time-consuming and inefficiency which limits the potential application in nanoimprint lithography. To find a simple and low-cost method to fabricate the mold for nanoimprint lithography, and to improve the application in nanoimprint lithography have become the research focus. Instead of being formed by traditional lithography, the anodic aluminum oxide (AAO), with highly regular structures and high pore density, is the mold to achieve periodic structures for nanoimprint lithography. In this work, we successfully transfer a 2D nanoporous array structure to the Si surface via the nanoimprint lithography and AAO. The pore diameter and the interpore distance of the porous silicon (PS) are well consistent with that of AAO template. The interval, the diameter, and the height of the hexagonal array structure are 350–560 nm, 170–480 nm, and 200 nm, respectively. We have tested the Raman spectrum under the excitation by lasers of wavelength 514 nm. According to the results, two samples each exhibits a peak at 520 cm-1 and no frequency shift is observed with the Si characteristic Raman peak, indicating that the PS was not extensively damaged by the ICP etching process. Raman intensity in the structured Si is almost enhanced by a factor of 12 as compared with the case on polished Si, which will greatly benefit the application of Si-based optical devices. Thus, we have realized the replica of the PS template and obtained a nanopillar soft template via the hot embossing lithography.
    • 基金项目: 国家自然科学基金(批准号:61076042)、国家重大科学仪器设备开发专项(批准号:2011YQ16000205)和国家高技术研究发展(863)计划(批准号:2011AA03A106)资助的课题.
    • Funds: Project supported by in part by the National Natural Science Foundation of China (Grant No. 61076042), the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205), and the National High Technology Research and Development Program of China (Grant No. 2011AA03A106).
    [1]

    Torres S, Zankovych S, Seekamp J, Kam A P, Clavijo Cedeno C, Hoffmann T, Ahopelto J, Reuther F, Pfeiffer K, Bleidiessel G, Gruetzner G, Maximov M V, Heidari B 2003 Mat. Sci. Eng. C-Bio. S. 23 23

    [2]

    Guo L J 2007 Adv. Mater. 19 495

    [3]

    Zhou W M, Min G Q, Zhang J, Liu Y B, Wang J H, Zhang Y P, Sun F 2011 Nano-Micro Lett. 3 135

    [4]

    Lee P S, Lee O J, Hwang S K, Jung S H, Jee S E, LeeK H 2005 Chem. Mater. 17 6181

    [5]

    Masuda H, Fukuda K 1995 Science 268 1446

    [6]

    Polyakov B, Prikulis J, Grigorjeva L, Millers D, Daly B, Holmes J D, Erts D 2007 J. Phys. Conf. Ser. 61 283

    [7]

    Xu C L, Li H, Zhao G Y, Li H L 2006 Mater. Lett. 60 2335

    [8]

    Banerjee P, Perez I, Henn-Lecordier L, Lee S B, Rubloff G W 2009 Nat. Nanotechnol. 4 292

    [9]

    Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49

    [10]

    Aryal M, Buyukserin F, Mielczarek K, Zhao X M, Gao J M, Zakhidov A, Hu W C 2008 J. Vac. Sci. Technol. B 26 2562

    [11]

    Masuda H, Yada K, Osaka A 1998 Jpn. J. Appl. Phys. 37 L1340

    [12]

    Sun C M, Luo J, Wu L M, Zhang J Y 2010 ACS Appl. Mater. Inter. 2 1299

    [13]

    Li Y B, Zheng M J, Ma L, Shen W Z 2006 Nanotechnology 17 5101

    [14]

    Lee W, Ji R, Gosele U, Nielsch K 2006 Nat. Mater. 5 741

    [15]

    Hong S H, Han K S, Lee H, Cho J U, Kim Y K 2007 Jpn. J. Appl. Phys. 46 6375

    [16]

    Zhou W M, Zhang J, Li X L, Liu Y B, Min G Q, Song Z T, Zhang J P 2009 Appl. Surf. Sci. 255 8019

    [17]

    Zhou W M, Min G Q, Song Z T, Zhang J, Liu Y B, Zhang J P 2010 Nanotechnology 21 205304

    [18]

    Nasirpouri F, Peighambari S M 2013 Ionics 19 535

    [19]

    Dai T, Zhang B, Kang X N, Bao K, Zhao W Z, Xu D S, Zhang G Y, Gan Z Z 2008 IEEE Photonic. Tech. L. 20 1974

    [20]

    Fu X X, Zhang B, Kang X N, Deng J J, Xiong C, Dai T, Jiang X Z, Yu T J, Chen Z Z, Zhang G Y 2011 Opt. Express 19 A1104

    [21]

    Bai A Q, Hu D, Ding W C, Su S J, Hu W X, Xue C L, Fan Z C, Cheng B W, Yu Y D, Wang Q M 2009 Acta Phys. Sin. 58 4997 (in Chinese) [白安琪, 胡迪, 丁武昌, 苏少坚, 胡炜玄, 薛春来, 樊中朝, 成步文, 俞育德, 王启明 2009 物理学报 58 4997]

    [22]

    Kanamori Y, Hane K, Sai H, Yugami H 2001 Appl. Phys. Lett. 78 142

    [23]

    Wang H P, Tsai K T, Lai K Y, Wei T C, Wang Y L, He J H 2012 Opt. Express 20 A94

    [24]

    Hamouda F, Sahaf H, Held S, Barbillon G, Gogol P, Moyen E, Aassime A, Moreau J, Canva M, Lourtioz J M, Hanbucken M, Bartenlian B 2011 Microelectron. Eng. 88 2444

    [25]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851 (in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛 2010 物理学报 59 5851]

    [26]

    Ting Y C, Shy S L 2012 Proc. of Spie 8323 83232H

  • [1]

    Torres S, Zankovych S, Seekamp J, Kam A P, Clavijo Cedeno C, Hoffmann T, Ahopelto J, Reuther F, Pfeiffer K, Bleidiessel G, Gruetzner G, Maximov M V, Heidari B 2003 Mat. Sci. Eng. C-Bio. S. 23 23

    [2]

    Guo L J 2007 Adv. Mater. 19 495

    [3]

    Zhou W M, Min G Q, Zhang J, Liu Y B, Wang J H, Zhang Y P, Sun F 2011 Nano-Micro Lett. 3 135

    [4]

    Lee P S, Lee O J, Hwang S K, Jung S H, Jee S E, LeeK H 2005 Chem. Mater. 17 6181

    [5]

    Masuda H, Fukuda K 1995 Science 268 1446

    [6]

    Polyakov B, Prikulis J, Grigorjeva L, Millers D, Daly B, Holmes J D, Erts D 2007 J. Phys. Conf. Ser. 61 283

    [7]

    Xu C L, Li H, Zhao G Y, Li H L 2006 Mater. Lett. 60 2335

    [8]

    Banerjee P, Perez I, Henn-Lecordier L, Lee S B, Rubloff G W 2009 Nat. Nanotechnol. 4 292

    [9]

    Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49

    [10]

    Aryal M, Buyukserin F, Mielczarek K, Zhao X M, Gao J M, Zakhidov A, Hu W C 2008 J. Vac. Sci. Technol. B 26 2562

    [11]

    Masuda H, Yada K, Osaka A 1998 Jpn. J. Appl. Phys. 37 L1340

    [12]

    Sun C M, Luo J, Wu L M, Zhang J Y 2010 ACS Appl. Mater. Inter. 2 1299

    [13]

    Li Y B, Zheng M J, Ma L, Shen W Z 2006 Nanotechnology 17 5101

    [14]

    Lee W, Ji R, Gosele U, Nielsch K 2006 Nat. Mater. 5 741

    [15]

    Hong S H, Han K S, Lee H, Cho J U, Kim Y K 2007 Jpn. J. Appl. Phys. 46 6375

    [16]

    Zhou W M, Zhang J, Li X L, Liu Y B, Min G Q, Song Z T, Zhang J P 2009 Appl. Surf. Sci. 255 8019

    [17]

    Zhou W M, Min G Q, Song Z T, Zhang J, Liu Y B, Zhang J P 2010 Nanotechnology 21 205304

    [18]

    Nasirpouri F, Peighambari S M 2013 Ionics 19 535

    [19]

    Dai T, Zhang B, Kang X N, Bao K, Zhao W Z, Xu D S, Zhang G Y, Gan Z Z 2008 IEEE Photonic. Tech. L. 20 1974

    [20]

    Fu X X, Zhang B, Kang X N, Deng J J, Xiong C, Dai T, Jiang X Z, Yu T J, Chen Z Z, Zhang G Y 2011 Opt. Express 19 A1104

    [21]

    Bai A Q, Hu D, Ding W C, Su S J, Hu W X, Xue C L, Fan Z C, Cheng B W, Yu Y D, Wang Q M 2009 Acta Phys. Sin. 58 4997 (in Chinese) [白安琪, 胡迪, 丁武昌, 苏少坚, 胡炜玄, 薛春来, 樊中朝, 成步文, 俞育德, 王启明 2009 物理学报 58 4997]

    [22]

    Kanamori Y, Hane K, Sai H, Yugami H 2001 Appl. Phys. Lett. 78 142

    [23]

    Wang H P, Tsai K T, Lai K Y, Wei T C, Wang Y L, He J H 2012 Opt. Express 20 A94

    [24]

    Hamouda F, Sahaf H, Held S, Barbillon G, Gogol P, Moyen E, Aassime A, Moreau J, Canva M, Lourtioz J M, Hanbucken M, Bartenlian B 2011 Microelectron. Eng. 88 2444

    [25]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851 (in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛 2010 物理学报 59 5851]

    [26]

    Ting Y C, Shy S L 2012 Proc. of Spie 8323 83232H

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [3] 梁玲玲, 赵艳, 冯超. 铝基银纳米阵列制备及其紫外-可见-近红外光吸收特性. 物理学报, 2020, 69(6): 065201. doi: 10.7498/aps.69.20191522
    [4] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [5] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [6] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [7] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [8] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测. 物理学报, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [9] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [10] 李天昊, 郑国恒, 刘超然, 夏委委, 李冬雪, 段智勇. 掩膜板凸出环隔离压缩式纳米压印施压气体的研究. 物理学报, 2013, 62(6): 068103. doi: 10.7498/aps.62.068103
    [11] 张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元. 硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究. 物理学报, 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [12] 吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋. 新型氧化铝模板自组装制备非晶碳纳米点阵列膜及其场发射性能研究. 物理学报, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [13] 段宝兴, 杨银堂. 利用Keating模型计算Si(1-x)Gex及非晶硅的拉曼频移. 物理学报, 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [14] 杨海波, 胡 明, 张 伟, 张绪瑞, 李德军, 王明霞. 基于纳米压痕法的多孔硅硬度及杨氏模量与微观结构关系研究. 物理学报, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [15] 陈雷明, 郭艳峰, 郭 熹, 唐为华. 改性光刻胶制备纳米压印模版. 物理学报, 2006, 55(12): 6511-6514. doi: 10.7498/aps.55.6511
    [16] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [17] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [18] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [20] 梁二军, 晁明举. 激光诱导多孔硅晶格畸变的Raman光谱和光致发光谱研究. 物理学报, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
计量
  • 文章访问数:  7822
  • PDF下载量:  1416
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-27
  • 修回日期:  2013-09-22
  • 刊出日期:  2014-01-05

/

返回文章
返回