搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子轰击调制离子束溅射沉积Ge量子点的生长演变

熊飞 杨杰 张辉 陈刚 杨培志

引用本文:
Citation:

原子轰击调制离子束溅射沉积Ge量子点的生长演变

熊飞, 杨杰, 张辉, 陈刚, 杨培志

Growth evolution of Ge quantum dot modulated by the atom bombardment during ion beam sputtering deposition

Xiong Fei, Yang Jie, Zhang Hui, Chen Gang, Yang Pei-Zhi
PDF
导出引用
  • 采用离子束溅射沉积的方法在Si衬底上生长Ge量子点, 观察到量子点的生长随Ge原子层沉积厚度θ的增加经历了两个不同的阶段. 当θ在6—10.5个单原子层(ML)范围内时, 量子点的平均底宽和平均高度随θ增加同时增大, 生长得到高宽比较小的圆顶形Ge量子点, 伴随着量子点的生长, 二维浸润层的厚度同时增大, 量子点的分布密度缓慢增加; 当θ在11.5—17 ML范围内时, 获得高宽比较大的圆顶形Ge量子点, 量子点以纵向生长为主导, 二维浸润层的离解促进量子点的成核和长大, 量子点的分布密度随θ的增加快速增大; 量子点在θ由10.5 ML增加到11.5 ML时由一个生长阶段转变到另一个生长阶段, 其分布密度同时发生6.4倍的增加. 离子束溅射沉积Ge量子点的生长演变与在热平衡状态下生长的量子点不同, 在量子点的不同生长阶段, 其表面形貌和分布密度的变化特点是在热力学条件限制下表面原子动态演变的结果, θ的变化是引起系统自由能改变的主要因素. 携带一定动能的溅射原子对生长表面的轰击促进表面原子的扩散迁移, 同时压制量子点的成核, 在浸润层中形成超应变状态, 因而, 改变体系的能量和表面原子的动力学行为, 对量子点的生长起重要作用.
    The Ge quantum dots on Si substrate are prepared by ion beam sputtering deposition (IBSD). The growth evolution is observed to experience two stages with Ge coverage (θ) increasing. When θ increases from 6 monolayers (ML) to 10.5 ML, the average base width and height of quantum dots both increase, and the dome shape dots with small aspect ratio values are obtained. As the dots grow up, Ge atoms are also accumulated in the wetting layer, which contributes to the observed quantum dot density increasing mildly during this stage. When θ is in a range from 11.5 ML to 17 ML, vertical growth dominates the dot evolution. Another dome shape quantum dots are prepared with large aspect ratio values. Ge coverage gain results in the dot density increasing rapidly. A wetting layer decomposition process is demonstrated to give significant effect on that. The growth transition occurs as θ increases from 10.5 ML to 11.5 ML, and the dot density is enhanced 6.4 times in this course. So it is concluded that the evolution of Ge quantum dot prepared by IBSD is very different from that deposited on the thermal equilibrium condition. The observed characters of the dot shape and size distribution result from the kinetic behaviors of the surface atoms which are restricted by the thermodynamic limitation. Ge coverage is the one of the most important factors which can change the free energy. On the other hand, the energic sputtered atom bombardment enhances surface diffusion and defers nucleation of three-dimensional islands until the superstrain wetting layer is formed, which can also change the system free energy and the surface atom kinetic behaviors. So the growth evolution of Ge quantum dots prepared by IBSD is related so much with the effect of atom bombardment on the quantum dot growth.
    • 基金项目: 国家自然科学基金云南联合基金(批准号: U1037604)、云南省应用基础研究基金(批准号: 2009CD003)、云南省教育厅科学研究基金重点项目(批准号: 09C008)、云南大学科研基金(批准号: 2009E28Q, 2010YBV47)资助的课题.
    • Funds: Project supported by the Joint Fund of National Natural Science Foundation of China and Yunnan Province, China (Grant No. U1037604), the Applied Basic Research Foundations of Yunnan Province, China (Grant No. 2009CD003), the Key Programs for Scientific Research Foundation of Yunnan Educational Bureau, China (Grant No. 09C008) and the Scientific Research Foundation of Yunnan University, China (Grant Nos. 2009E28Q, 2010YBV47).
    [1]

    Eaglesham D J, Cerullo M 1990 Phys. Rev. Lett. 64 1943

    [2]

    Yang H B, Tao Z S, Lin J H, Lu F, Jiang Z M, Zhong Z Y 2008 Appl. Phys. Lett. 92 111907

    [3]

    Rokhinson L P, Tsui D C, Benton J L 1999 Appl. Phys. Lett. 75 2413

    [4]

    Tong S, Lee J Y, Kin H J, Liu F, Wang K L 2005 Opt. Mater. 27 1097

    [5]

    Larsson M, Elfving A, Holtz P O, Hnsson G V, Ni W X 2003 Surf. Sci. 532-535 832

    [6]

    Kamins T I, Carr E C, Williams R S, Rosner S J 1997 J. Appl. Phys. 81 211

    [7]

    Ross F M, Tromp R M, Reuter M C 1999 Science 286 1931

    [8]

    Medeiros-Ribeiro G, Bratkovski A M, Kamins T I, Ohlberg D A A, Williams R S 1998 Science 279 353

    [9]

    Capellini G, De Seta M, Evangelisti F 2003 J. Appl. Phys. 93 291

    [10]

    Shchukin V A, Ledentsov N N, Kopev P S, Bimberg D 1995 Phys. Rev. Lett. 75 2968

    [11]

    Kamins T I, Medeiros-Ribeiro G, Ohlberg D A A, Williams R S 1999 J. Appl. Phys. 85 1159

    [12]

    Dobbs H T, Vvedebsky D D, Zangwill A, Johansson J, Carlsson N, Seifert W 1997 Phys. Rev. Lett. 79 897

    [13]

    Koduvely H M, Zangwill A 1999 Phys. Rev. B 60 R2204

    [14]

    Song H Z, Usuki T, Nakata Y, Yokoyama N, Sasakura H, Muto S 2006 Phys. Rev. B 73 115327

    [15]

    Vailionis A, Cho B, Glass G, Desjardins P, Cahill D G, Greene J E 2000 Phys. Rev. Lett. 85 3672

    [16]

    Chen K M, Jesson D E, Pennycook S J, Thundat T, Warmack R J 1997 Phys. Rev. B 56 R1700

    [17]

    Meyer F, Schwebel C, Pellet C, Gautherin G, Buxbaum A, Eizenberg M, Raizman A 1990 Thin Solid Films 184 117

    [18]

    Mosleh M, Meyer F, Schwebel C, Pellet C, Eizenberg M 1994 Thin Solid Films 246 30

    [19]

    Choil C H, Hultman L, Barnett S A 1990 J. Vac. Sci. Technol. A 8 1587

    [20]

    Sasaki K, Takahashi Y, Ikeda T, Hata T 2002 Vacuum 66 457

    [21]

    Xiong F, Pan H X, Zhang H, Yang Y 2011 Acta Phys. Sin. 60 088102 (in Chinese) [熊飞, 潘红星, 张辉, 杨宇 2011 物理学报 60 088102]

    [22]

    Chung H C, Liu C P, Lai Y L 2008 Appl. Phys. A 91 267

    [23]

    Leonard D, Pond K, Petroff P M 1994 Phys. Rev. B 50 11687

    [24]

    Daruka I, Tersoff J, Barabási A L 1999 Phys. Rev. Lett. 82 2753

    [25]

    Jin G, Liu J L, Wang K L 2003 Appl. Phys. Lett. 83 284

    [26]

    Barabási A L 1999 Mater. Sci. Eng. B 67 23

    [27]

    Zhang Y W, Brower A F 2001 Appl. Phys. Lett. 78 2706

    [28]

    Johansson J, Seifert W 2002 J. Crys. Growth 234 132

    [29]

    Zhang Y, Drucker J 2003 J. Appl. Phys. 93 9583

    [30]

    Floro J A, Lucadamo G A, Chason E, Freund L B, Sinclair M, Twesten R D, Hwang R Q 1998 Phys. Rev. Lett. 80 4717

    [31]

    Rickman J M, Srolovitz D J 1993 Surf. Sci. 284 211

  • [1]

    Eaglesham D J, Cerullo M 1990 Phys. Rev. Lett. 64 1943

    [2]

    Yang H B, Tao Z S, Lin J H, Lu F, Jiang Z M, Zhong Z Y 2008 Appl. Phys. Lett. 92 111907

    [3]

    Rokhinson L P, Tsui D C, Benton J L 1999 Appl. Phys. Lett. 75 2413

    [4]

    Tong S, Lee J Y, Kin H J, Liu F, Wang K L 2005 Opt. Mater. 27 1097

    [5]

    Larsson M, Elfving A, Holtz P O, Hnsson G V, Ni W X 2003 Surf. Sci. 532-535 832

    [6]

    Kamins T I, Carr E C, Williams R S, Rosner S J 1997 J. Appl. Phys. 81 211

    [7]

    Ross F M, Tromp R M, Reuter M C 1999 Science 286 1931

    [8]

    Medeiros-Ribeiro G, Bratkovski A M, Kamins T I, Ohlberg D A A, Williams R S 1998 Science 279 353

    [9]

    Capellini G, De Seta M, Evangelisti F 2003 J. Appl. Phys. 93 291

    [10]

    Shchukin V A, Ledentsov N N, Kopev P S, Bimberg D 1995 Phys. Rev. Lett. 75 2968

    [11]

    Kamins T I, Medeiros-Ribeiro G, Ohlberg D A A, Williams R S 1999 J. Appl. Phys. 85 1159

    [12]

    Dobbs H T, Vvedebsky D D, Zangwill A, Johansson J, Carlsson N, Seifert W 1997 Phys. Rev. Lett. 79 897

    [13]

    Koduvely H M, Zangwill A 1999 Phys. Rev. B 60 R2204

    [14]

    Song H Z, Usuki T, Nakata Y, Yokoyama N, Sasakura H, Muto S 2006 Phys. Rev. B 73 115327

    [15]

    Vailionis A, Cho B, Glass G, Desjardins P, Cahill D G, Greene J E 2000 Phys. Rev. Lett. 85 3672

    [16]

    Chen K M, Jesson D E, Pennycook S J, Thundat T, Warmack R J 1997 Phys. Rev. B 56 R1700

    [17]

    Meyer F, Schwebel C, Pellet C, Gautherin G, Buxbaum A, Eizenberg M, Raizman A 1990 Thin Solid Films 184 117

    [18]

    Mosleh M, Meyer F, Schwebel C, Pellet C, Eizenberg M 1994 Thin Solid Films 246 30

    [19]

    Choil C H, Hultman L, Barnett S A 1990 J. Vac. Sci. Technol. A 8 1587

    [20]

    Sasaki K, Takahashi Y, Ikeda T, Hata T 2002 Vacuum 66 457

    [21]

    Xiong F, Pan H X, Zhang H, Yang Y 2011 Acta Phys. Sin. 60 088102 (in Chinese) [熊飞, 潘红星, 张辉, 杨宇 2011 物理学报 60 088102]

    [22]

    Chung H C, Liu C P, Lai Y L 2008 Appl. Phys. A 91 267

    [23]

    Leonard D, Pond K, Petroff P M 1994 Phys. Rev. B 50 11687

    [24]

    Daruka I, Tersoff J, Barabási A L 1999 Phys. Rev. Lett. 82 2753

    [25]

    Jin G, Liu J L, Wang K L 2003 Appl. Phys. Lett. 83 284

    [26]

    Barabási A L 1999 Mater. Sci. Eng. B 67 23

    [27]

    Zhang Y W, Brower A F 2001 Appl. Phys. Lett. 78 2706

    [28]

    Johansson J, Seifert W 2002 J. Crys. Growth 234 132

    [29]

    Zhang Y, Drucker J 2003 J. Appl. Phys. 93 9583

    [30]

    Floro J A, Lucadamo G A, Chason E, Freund L B, Sinclair M, Twesten R D, Hwang R Q 1998 Phys. Rev. Lett. 80 4717

    [31]

    Rickman J M, Srolovitz D J 1993 Surf. Sci. 284 211

  • [1] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [2] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [3] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [4] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应. 物理学报, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [5] 周勋, 罗子江, 王继红, 郭祥, 丁召. 低As压退火对GaAs(001)表面形貌与重构的影响. 物理学报, 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [6] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [7] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [8] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响. 物理学报, 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [9] 杨杰, 王茺, 靳映霞, 李 亮, 陶东平, 杨 宇. 离子束溅射Ge量子点的应变调制生长. 物理学报, 2012, 61(1): 016804. doi: 10.7498/aps.61.016804
    [10] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [11] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [12] 张学贵, 王茺, 鲁植全, 杨杰, 李亮, 杨宇. 离子束溅射自组装Ge/Si量子点生长的演变. 物理学报, 2011, 60(9): 096101. doi: 10.7498/aps.60.096101
    [13] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [14] 熊飞, 潘红星, 张辉, 杨宇. 溅射沉积自诱导混晶界面与Ge量子点的生长研究. 物理学报, 2011, 60(8): 088102. doi: 10.7498/aps.60.088102
    [15] 江洋, 罗毅, 席光义, 汪莱, 李洪涛, 赵维, 韩彦军. AlGaN插入层对6H-SiC上金属有机物气相外延生长的GaN薄膜残余应力及表面形貌的影响. 物理学报, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [16] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [17] 汪 渊, 宋忠孝, 徐可为. 体心立方金属W薄膜晶体取向的膜厚尺寸效应及其表面映射. 物理学报, 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [18] 杨吉军, 徐可为. 生长初期Ta膜的表面动态演化行为. 物理学报, 2007, 56(10): 6023-6027. doi: 10.7498/aps.56.6023
    [19] 汪 渊, 白宣羽, 徐可为. 基于小波变换Cu-W薄膜表面形貌表征与硬度值分散性评价. 物理学报, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [20] 廖梅勇, 秦复光, 柴春林, 刘志凯, 杨少延, 姚振钰, 王占国. 离子能量和沉积温度对离子束沉积碳膜表面形貌的影响. 物理学报, 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
计量
  • 文章访问数:  5173
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-19
  • 修回日期:  2012-05-15
  • 刊出日期:  2012-11-05

/

返回文章
返回