搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F8BT薄膜表面形貌及与Al形成界面的电子结构和反应

潘宵 鞠焕鑫 冯雪飞 范其瑭 王嘉兴 杨耀文 朱俊发

引用本文:
Citation:

F8BT薄膜表面形貌及与Al形成界面的电子结构和反应

潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发

Surface morphology of F8BT films and interface structures and reactions of Al on F8BT films

Pan Xiao, Ju Huan-Xin, Feng Xue-Fei, Fan Qi-Tang, Wang Chia-Hsin, Yang Yaw-Wen, Zhu Jun-Fa
PDF
导出引用
  • 基于共轭聚合物光电器件的性能与聚合物的表面形貌、分子取向、以及与金属电极形成的界面结构密切相关. 本文利用原子力显微镜(AFM)、同步辐射光电子能谱(SRPES)和近边X射线吸收精细结构谱(NEXAFS)等, 研究了聚(9, 9-二辛基芴并苯噻二唑)(F8BT)薄膜的表面形貌、分子取向及其与Al 电极形成界面过程的结构变化. 结果表明, 在略低于F8BT玻璃转变温度(Tg=130 ℃)条件下对F8BT薄膜进行退火, 可明显增加薄膜的表面粗糙度, 薄膜中F8BT 的分子取向角约为49, 9, 9-二辛基芴单元(F8)与苯噻唑单元(BT)几乎在同一平面. 在Al/F8BT 界面形成过程中, Al与F8BT中的C, N和S均发生不同程度的化学反应, 并导致价带结构和未占据分子轨道(LUMO)态密度的变化. Al对F8BT进行n型掺杂引起F8BT能带弯曲的同时, 未占据能级被部分占据, 更多的电子将被注入到LUMO+1中. 通过考察价带电子结构、芯能级位移及二次截止边的变化, 绘制了清晰的Al/F8BT界面能级图.
    The surface morphology and molecular orientation of -conjugated polymers, along with the chemical interaction and electronic structure at the interface between metals and these polymers, strongly affect the performance of the polymer-based organic electronic and optoelectronic devices. In this study, atomic force microscopy (AFM), synchrotron radiation photoemission spectroscopy (SRPES), and near edge X-ray absorption fine structure (NEXAFS) have been used to in situ investigate the morphology, structure, and molecular orientation of spin-coated poly(9,9-dioctylfluorene-co-benzothiodiazole) (F8BT) films and their interaction with the vapor-deposited Al metal. F8BT films were prepared by spin-coating the F8BT chloroform solution onto clean gold-coated silicon wafer surfaces. The room temperature spin-coated F8BT film is rather flat, while mild annealing treatments (120 ℃) below the glass transition temperature (Tg=130 ℃) lead to an apparent increase of surface roughness of F8BT film, which is helpful to effectively increase the contact areas between metals and F8BT. After 70 ℃ annealing in vacuum, the aromatic rings of F8BT preferentially stand more edge-on, making an average tilt angle of approximately 49 with the substrate, while the 9,9-dioctylfluorene unit (F8) and the benzothiodiazole unit (BT) nearly lie in the same plane. Upon vapor-depositing Al metal onto F8BT at room temperature, strong chemical interactions occur between Al and F8BT, as evidenced by the distinct changes of the S 2p, N 1s and C 1s spectra. Al reacts with S atoms more strongly than with N and C atoms in F8BT. In addition, obvious structural changes in valence band of F8BT are also observed during the Al deposition. Furthermore, Al dopes electrons into F8BT, leading to downward band bending, formation of interfacial dipole at the Al/F8BT interface, and partial occupation of lowest unoccupied molecular orbits (LUMO). However, no doping-induced gap states can be observed during the formation of Al/F8BT interface. Through the investigation of the core-level and valence band spectra evolution of F8BT together with the shifts of secondary electron cutoff during Al deposition, an energy level alignment diagram at the Al/F8BT interface is derived. The information gained through this study will help better understand the correlation between the interface structures of metal electrodes on semiconducting, -conjugated polymer materials and the performances of real polymer-based electronic and optoelectronic devices, which will in turn help develop the more efficient polymer-based organic devices.
    • 基金项目: 国家自然科学基金面上项目(批准号: 21173200, 21473178)和国家重点基础研究发展计划(批准号: 2013CB834605)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21173200, 21473178), and the National Key Basic Research Program of China (Grant No. 2013CB834605).
    [1]

    Brabec C J 2004 Sol. Energ. Mat. Sol. C 83 273

    [2]

    Forrest S R 2004 Nature 428 911

    [3]

    Bolink H J, Coronado E, Repetto D, Sessolo M, Barea E M, Bisquert J, Garcia-Belmonte G, Prochazka J, Kavan L 2008 Adv. Funct. Mater. 18 145

    [4]

    Haque S A, Koops S, Tokmoldin N, Durrant J R, Huang J S, Bradley D D C, Palomares E 2007 Adv. Mater. 19 683

    [5]

    Kabra D, Song M H, Wenger B, Friend R H, Snaith H J 2008 Adv. Mater. 20 3447

    [6]

    Nakayama Y, Morii K, Suzuki Y, Machida H, Kera S, Ueno N, Kitagawa H, Noguchi Y, Ishii H 2009 Adv. Funct. Mater. 19 3746

    [7]

    Duhm S, Heimel G, Salzmann I, Glowatzki H, Johnson R L, Vollmer A, Rabe J P, Koch N 2008 Nat. Mater. 7 326

    [8]

    Nam S, Shin M, Kim H, Ha C S, Ree M, Kim Y 2011 Adv. Funct. Mater. 21 4527

    [9]

    Cataldo S, Sartorio C, Giannazzo F, Scandurra A, Pignataro B 2014 Nanoscale 6 3566

    [10]

    Meier R, Chiang H Y, Ruderer M A, Guo S A, Korstgens V, Perlich J, Muller-Buschbaum P 2012 J. Polym. Sci. Pol. Phys. 50 631

    [11]

    Orimo A, Masuda K, Honda S, Benten H, Ito S, Ohkita H, Tsuji H 2010 Appl. Phys. Lett. 96

    [12]

    Roige A, Campoy-Quiles M, Osso J O, Alonso M I, Vega L F, Garriga M 2012 Synthetic Met. 161 2570

    [13]

    Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [14]

    Donley C L, Zaumseil J, Andreasen J W, Nielsen M M, Sirringhaus H, Friend R H, Kim J S 2005 J. Am Chem. Soc. 127 12890

    [15]

    Hofmann O T, Egger D A, Zojer E 2010 Nano. Lett. 10 4369

    [16]

    Crispin X, Geskin V, Crispin A, Cornil J, Lazzaroni R, Salaneck W R, Bredas J L 2002 J. Am. Chem. Soc. 124 8131

    [17]

    Frisch J, Glowatzki H, Janietz S, Koch N 2009 Org. Electron. 10 1459

    [18]

    Fung M K, Lai S L, Bao S N, Lee C S, Lee S T, Wu W W, Inbasekaran M, O’Brien J J 2002 J. Vac. Sci. Technol. A 20 911

    [19]

    Zhou Y H, Zhu L P, Qiu Y 2011 Org. Electron. 12 234

    [20]

    Dannetun P, Boman M, Stafstrom S, Salaneck W R, Lazzaroni R, Fredriksson C, Bredas J L, Zamboni R, Taliani C 1993 J. Chem. Phys. 99 664

    [21]

    Zhao W, Guo Y X, Feng X F, Zhang L, Zhang W H, Zhu J F 2009 Chinese Sci. Bull. 54 1978

    [22]

    Ju H X, Feng X F, Ye Y F, Zhang L, Pan H B, Campbell C T, Zhu J F 2012 J. Phys. Chem. C 116 20465

    [23]

    Ju H X, Ye Y F, Feng X F, Pan H B, Zhu J F, Ruzycki N, Campbell C T 2014 J. Phys. Chem. C 118 6352

    [24]

    Greczynski G, Fahlman M, Salaneck W R 2000 J. Chem. Phys. 113 2407

    [25]

    Liao L S, Cheng L F, Fung M K, Lee C S, Lee S T, Inbasekaran M, Woo E P, Wu W W 2000 Phys. Rev. B 62 10004

    [26]

    Liao L S, Fung M K, Cheng L F, Lee C S, Lee S T, Inbasekaran M, Woo E P, Wu W W 2000 Appl. Phys. Lett. 77 3191

    [27]

    Fung M K, Lai S L, Tong S W, Bao S N, Lee C S, Wu W W, Inbasekaran M, O’Brien J J, Lee S T 2003 J. Appl. Phys. 94 5763

    [28]

    Fung M K, Tong S W, Lai S L, Bao S N, Lee C S, Wu W W, Inbasekaran M, O’Brien J J, Liu S Y, Lee S T 2003 J. Appl. Phys. 94 2686

    [29]

    Feng X F, Zhao W, Ju H X, Zhang L, Ye Y F, Zhang W H, Zhu J F 2012 Org. Electron. 13 1060

    [30]

    Min H, Girard-Lauriault P L, Gross T, Lippitz A, Dietrich P, Unger W E S 2012 Anal. Bioanal. Chem. 403 613

    [31]

    Shin M, Kim H, Kim Y 2011 Mater. Sci. Eng. B-Adv. 176 382

    [32]

    Xiong Y, Peng J B, Wu H B, Wang J 2009 Chin. Phys.Lett. 26 097801

    [33]

    Yan H P, Swaraj S, Wang C, Hwang I, Greenham N C, Groves C, Ade H, McNeill C R 2010 Adv. Funct. Mater. 20 4329

    [34]

    Meier R, Chiang H Y, Ruderer M A, Guo S A, Korstgens V, Perlich J, Muller B P 2012 J. Polym. Sci. Pol. Phys. 50 631

    [35]

    Lee T W, Park O O 2000 Adv. Mater. 12 801

    [36]

    Anselmo A S, Dzwilewski A, Svensson K, Moons E 2013 J. Polym. Sci. Pol. Phys. 51 176

    [37]

    Watts B, Schuettfort T, McNeill C R 2011 Adv. Funct. Mater. 21 1122

    [38]

    Gliboff M, Sulas D, Nordlund D, deQuilettes D W, Nguyen P D, Seidler G T, Li X S, Ginger D S 2014 J. Phys. Chem. C 118 5570

    [39]

    Salaneck W R, Bredas J L 1996 Adv. Mater. 8 48

    [40]

    Bebin P, Prud’homme R E 2003 Chem. Mater. 15 965

    [41]

    Oultache A K, Prud’homme R E 2000 Polym. Advan. Technol. 11 316

    [42]

    Michaelson H B 1977 J. Appl. Phys. 48 4729

  • [1]

    Brabec C J 2004 Sol. Energ. Mat. Sol. C 83 273

    [2]

    Forrest S R 2004 Nature 428 911

    [3]

    Bolink H J, Coronado E, Repetto D, Sessolo M, Barea E M, Bisquert J, Garcia-Belmonte G, Prochazka J, Kavan L 2008 Adv. Funct. Mater. 18 145

    [4]

    Haque S A, Koops S, Tokmoldin N, Durrant J R, Huang J S, Bradley D D C, Palomares E 2007 Adv. Mater. 19 683

    [5]

    Kabra D, Song M H, Wenger B, Friend R H, Snaith H J 2008 Adv. Mater. 20 3447

    [6]

    Nakayama Y, Morii K, Suzuki Y, Machida H, Kera S, Ueno N, Kitagawa H, Noguchi Y, Ishii H 2009 Adv. Funct. Mater. 19 3746

    [7]

    Duhm S, Heimel G, Salzmann I, Glowatzki H, Johnson R L, Vollmer A, Rabe J P, Koch N 2008 Nat. Mater. 7 326

    [8]

    Nam S, Shin M, Kim H, Ha C S, Ree M, Kim Y 2011 Adv. Funct. Mater. 21 4527

    [9]

    Cataldo S, Sartorio C, Giannazzo F, Scandurra A, Pignataro B 2014 Nanoscale 6 3566

    [10]

    Meier R, Chiang H Y, Ruderer M A, Guo S A, Korstgens V, Perlich J, Muller-Buschbaum P 2012 J. Polym. Sci. Pol. Phys. 50 631

    [11]

    Orimo A, Masuda K, Honda S, Benten H, Ito S, Ohkita H, Tsuji H 2010 Appl. Phys. Lett. 96

    [12]

    Roige A, Campoy-Quiles M, Osso J O, Alonso M I, Vega L F, Garriga M 2012 Synthetic Met. 161 2570

    [13]

    Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [14]

    Donley C L, Zaumseil J, Andreasen J W, Nielsen M M, Sirringhaus H, Friend R H, Kim J S 2005 J. Am Chem. Soc. 127 12890

    [15]

    Hofmann O T, Egger D A, Zojer E 2010 Nano. Lett. 10 4369

    [16]

    Crispin X, Geskin V, Crispin A, Cornil J, Lazzaroni R, Salaneck W R, Bredas J L 2002 J. Am. Chem. Soc. 124 8131

    [17]

    Frisch J, Glowatzki H, Janietz S, Koch N 2009 Org. Electron. 10 1459

    [18]

    Fung M K, Lai S L, Bao S N, Lee C S, Lee S T, Wu W W, Inbasekaran M, O’Brien J J 2002 J. Vac. Sci. Technol. A 20 911

    [19]

    Zhou Y H, Zhu L P, Qiu Y 2011 Org. Electron. 12 234

    [20]

    Dannetun P, Boman M, Stafstrom S, Salaneck W R, Lazzaroni R, Fredriksson C, Bredas J L, Zamboni R, Taliani C 1993 J. Chem. Phys. 99 664

    [21]

    Zhao W, Guo Y X, Feng X F, Zhang L, Zhang W H, Zhu J F 2009 Chinese Sci. Bull. 54 1978

    [22]

    Ju H X, Feng X F, Ye Y F, Zhang L, Pan H B, Campbell C T, Zhu J F 2012 J. Phys. Chem. C 116 20465

    [23]

    Ju H X, Ye Y F, Feng X F, Pan H B, Zhu J F, Ruzycki N, Campbell C T 2014 J. Phys. Chem. C 118 6352

    [24]

    Greczynski G, Fahlman M, Salaneck W R 2000 J. Chem. Phys. 113 2407

    [25]

    Liao L S, Cheng L F, Fung M K, Lee C S, Lee S T, Inbasekaran M, Woo E P, Wu W W 2000 Phys. Rev. B 62 10004

    [26]

    Liao L S, Fung M K, Cheng L F, Lee C S, Lee S T, Inbasekaran M, Woo E P, Wu W W 2000 Appl. Phys. Lett. 77 3191

    [27]

    Fung M K, Lai S L, Tong S W, Bao S N, Lee C S, Wu W W, Inbasekaran M, O’Brien J J, Lee S T 2003 J. Appl. Phys. 94 5763

    [28]

    Fung M K, Tong S W, Lai S L, Bao S N, Lee C S, Wu W W, Inbasekaran M, O’Brien J J, Liu S Y, Lee S T 2003 J. Appl. Phys. 94 2686

    [29]

    Feng X F, Zhao W, Ju H X, Zhang L, Ye Y F, Zhang W H, Zhu J F 2012 Org. Electron. 13 1060

    [30]

    Min H, Girard-Lauriault P L, Gross T, Lippitz A, Dietrich P, Unger W E S 2012 Anal. Bioanal. Chem. 403 613

    [31]

    Shin M, Kim H, Kim Y 2011 Mater. Sci. Eng. B-Adv. 176 382

    [32]

    Xiong Y, Peng J B, Wu H B, Wang J 2009 Chin. Phys.Lett. 26 097801

    [33]

    Yan H P, Swaraj S, Wang C, Hwang I, Greenham N C, Groves C, Ade H, McNeill C R 2010 Adv. Funct. Mater. 20 4329

    [34]

    Meier R, Chiang H Y, Ruderer M A, Guo S A, Korstgens V, Perlich J, Muller B P 2012 J. Polym. Sci. Pol. Phys. 50 631

    [35]

    Lee T W, Park O O 2000 Adv. Mater. 12 801

    [36]

    Anselmo A S, Dzwilewski A, Svensson K, Moons E 2013 J. Polym. Sci. Pol. Phys. 51 176

    [37]

    Watts B, Schuettfort T, McNeill C R 2011 Adv. Funct. Mater. 21 1122

    [38]

    Gliboff M, Sulas D, Nordlund D, deQuilettes D W, Nguyen P D, Seidler G T, Li X S, Ginger D S 2014 J. Phys. Chem. C 118 5570

    [39]

    Salaneck W R, Bredas J L 1996 Adv. Mater. 8 48

    [40]

    Bebin P, Prud’homme R E 2003 Chem. Mater. 15 965

    [41]

    Oultache A K, Prud’homme R E 2000 Polym. Advan. Technol. 11 316

    [42]

    Michaelson H B 1977 J. Appl. Phys. 48 4729

  • [1] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [2] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [3] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [4] 李智浩, 曹亮, 郭玉献. 苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究. 物理学报, 2017, 66(22): 224101. doi: 10.7498/aps.66.224101
    [5] 周勋, 罗子江, 王继红, 郭祥, 丁召. 低As压退火对GaAs(001)表面形貌与重构的影响. 物理学报, 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [6] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [7] 蔡春锋, 张兵坡, 黎瑞锋, 徐天宁, 毕岗, 吴惠桢, 张文华, 朱俊发. 利用同步辐射光电子能谱技术测量ZnO/PbTe异质结的能带带阶. 物理学报, 2014, 63(16): 167301. doi: 10.7498/aps.63.167301
    [8] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [9] 张玲, 何智兵, 廖国, 谌家军, 许华, 李俊. B掺杂对Ti薄膜结构与性能的影响. 物理学报, 2012, 61(18): 186803. doi: 10.7498/aps.61.186803
    [10] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响. 物理学报, 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [11] 万力, 曹亮, 张文华, 韩玉岩, 陈铁锌, 刘凌云, 郭盼盼, 冯金勇, 徐法强. FePc与TiO2(110)及C60界面电子结构研究. 物理学报, 2012, 61(18): 186801. doi: 10.7498/aps.61.186801
    [12] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [13] 张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌. Fe/ZnO (0001)体系界面相互作用中薄膜厚度效应的光电子能谱研究. 物理学报, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [14] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [15] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究. 物理学报, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [16] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [17] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [18] 何少龙, 李宏年, 王晓雄, 李海洋, I. Kurash, 钱海杰, 苏 润, M. I. Abbas, 钟 俊, 洪才浩. Yb2.75C60同步辐射光电子能谱. 物理学报, 2005, 54(3): 1400-1405. doi: 10.7498/aps.54.1400
    [19] 汪 渊, 白宣羽, 徐可为. 基于小波变换Cu-W薄膜表面形貌表征与硬度值分散性评价. 物理学报, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [20] 李宏年. Rb掺杂C60单晶的相衍变和电子态. 物理学报, 2004, 53(1): 248-253. doi: 10.7498/aps.53.248
计量
  • 文章访问数:  7545
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-02-03
  • 刊出日期:  2015-04-05

/

返回文章
返回