搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种毛细管聚焦的微束X射线衍射仪

姜其立 段泽明 帅麒麟 李融武 潘秋丽 程琳

引用本文:
Citation:

一种毛细管聚焦的微束X射线衍射仪

姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳

A new type of micro-X-ray diffractometer focused by polycapillary optics

Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin
PDF
HTML
导出引用
  • 微区X射线衍射(micro-X-ray diffraction)分析在测量小样品或样品微区结构方面有着独特的优势. 介绍了实验室自行研发的台式毛细管聚焦的微束X射线衍射仪(μ-Hawk), 其主要由微焦斑X射线管、毛细管X光透镜、接收狭缝、SDD X射线探测器、θ-θ测角仪、三维样品台, 以及在LabVIEW语言环境下开发的计算机控制程序等部分组成. 控制程序的主界面具备微区X射线衍射分析和微区能量色散X射线荧光分析两种分析模式. 为了验证设备的可行性, 分别对一枚人民币五角硬币上“角”字第一划中央处的微区和直径为140 μm的铜质导线进行微区点分析; 对苹果手机主板焊锡接触点上1.0 mm × 0.6 mm区域内的物相分布进行二维扫描分析, 具体方式为在二维待测区域内逐点自动执行θ-θ角度扫描, 由程序控制的4个电机来实现此过程. 分析结果表明, μ-Hawk所具备的微区能量色散X射线荧光分析模式, 为物相结构的识别提供了元素种类的参考信息; 与常规的X射线衍射仪相比较, μ-Hawk所采集的衍射图整体本底较低, 并且所测得的衍射峰位置基本一致; μ-Hawk能适应小样品或样品微区物相结构的分析和物相分布的二维扫描分析, 在材料科学、地球科学和文物保护等领域有着广泛的应用前景.
    Micro-X-ray diffraction (μ-XRD) plays a significant role in measuring the phase structures of small samples or micro areas of larger samples. In this article, we propose a new type of desktop micro-X-ray diffractometer named μ-Hawk focused by polycapillary optics. It consists mainly of a microfocus X-ray tube, polycapillary optics, receiving slits, a silicon drift diode (SDD) X-ray detector integrated with single/multi-channel pulse analyzer, independently rotating θ-θ goniometer, high precision XYZ sample stage, computer programs developed by LabVIEW codes, etc. The main interface of the program has micro-X-ray diffraction analysis mode and micro energy dispersive X-ray fluorescence analysis mode. In addition, the monochromatization of X-ray, the angular resolution and the accuracy of the results of μ-Hawk are discussed. In order to demonstrate the feasibility of the instrument, the phase of micro area in the middle of the first stroke on the Chinese character “Jiao” from a 5-Jiao coin (Chinese currency) is measured by the μ-Hawk, and the phase of a copper wire 140 μm in diameter is also detected by it. After that, the phase of 1.0 mm × 0.6 mm area on the welding joint of the motherboard from an iPhone is two-dimensionally scanned by μ-Hawk. The θ-θ scanning is performed at each detected point inside the two-dimensional area. Four motors drive the X and Y axis of the sample stage as well as the θ1 and θ2 axis of the goniometer to accomplish the above functions. The results show that the micro energy dispersive X-ray fluorescence analysis mode of μ-Hawk can provide elementary reference information for the analysis of phase structure. Compared with conventional X-ray diffractometer, the μ-Hawk can detect the same diffraction peaks on the coin with lower background. Furthermore, the accurate diffraction peaks can be measured with a lower power and shorter time. The measured results can better reflect the true phase structure of the micro area. Six diffraction peaks and their phases can be clearly identified from the diffraction pattern of the copper wire. For the welding joint, the phase mapping of SnO2 (3 1 2) is acquired through data processing. Therefore, the μ-Hawk can adapt to the micro-X-ray diffraction analysis of small samples or micro areas of samples as well as the two-dimensional scanning analysis of phase mapping. The μ-Hawk exhibits the unique advantages of accomplishing accurate micro-X-ray diffraction analysis, convenient software, low working power, time saving, and small in size. It indicates a wide application prospect in the fields of materials, geosciences and heritage protection.
      通信作者: 程琳, chenglin@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11575026)资助的课题
      Corresponding author: Cheng Lin, chenglin@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575026)
    [1]

    Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114Google Scholar

    [2]

    Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng. B 206 69Google Scholar

    [3]

    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16Google Scholar

    [4]

    Wang W Q, Ji L, Li H X, Liu X H, Zhou H D, Chen J M 2019 Chin. Phys. B 28 036802Google Scholar

    [5]

    Biberger J, Füßer H J, Klaus M, Genzel C 2017 Wear 376– 377 1502Google Scholar

    [6]

    Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697Google Scholar

    [7]

    Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143Google Scholar

    [8]

    Shen Y Y, Zhang Y X, Qi T, Qiao Y, Jia Y X, Hei H J, He Z Y, Yu S W 2016 Chin. Phys. Lett. 33 088101

    [9]

    Hampai D, Dabagov S B, Cappuccio G 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 264Google Scholar

    [10]

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Cheng L 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 442 13Google Scholar

    [11]

    Berthold C, Bjeoumikhov A, Brügemann L 2009 Part. Part. Syst. Charact. 26 107Google Scholar

    [12]

    Romano F P, Pappalardo L, Masini N, Pappalardo G, Rizzo F 2011 Microchem. J. 99 449Google Scholar

    [13]

    Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar

    [14]

    段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar

    [15]

    Wrobel P, Czyzycki M, Furman L, Kolasinski K, Lankosz M, Mrenca A, Samek L, Wegrzynek D 2012 Talanta 93 186Google Scholar

    [16]

    Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1493Google Scholar

    [17]

    Décobert J, Guillamet R, Mocuta C, Carbone G, Guerault H 2013 J. Cryst. Growth 370 154Google Scholar

    [18]

    江超华 2014 多晶X射线衍射技术与应用 (北京: 化学工业出版社) 第169页

    Jiang C H 2014 The Technique and Application of Polycrystalline X-ray Diffraction (Beijing: Chemical Industry Press) p169 (in Chinese)

    [19]

    徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar

    Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar

    [20]

    Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar

    [21]

    Baated A, Hamasaki K, Kim S S, Kim K S, Suganuma K 2011 J. Electron. Mater. 40 2278Google Scholar

    [22]

    Zhou W, Mahato D N, Macdonald C A 2010 Thin Solid Films 518 5047Google Scholar

  • 图 1  台式毛细管聚焦的微束X射线衍射仪(μ-Hawk)结构示意图

    Fig. 1.  Structure of the desktop micro-X-ray diffractometer (μ-Hawk) focused by polycapillary optics.

    图 2  μ-Hawk自动化控制流程图

    Fig. 2.  Automatic control flow chart of μ-Hawk.

    图 3  μ-Hawk控制程序的主界面与Si (4 0 0)的X射线衍射图

    Fig. 3.  Main interface of controlling program of μ-Hawk and the X-ray diffraction pattern of Si (4 0 0).

    图 4  有Ni吸收片和无Ni吸收片两种条件下的X射线散射谱

    Fig. 4.  X-ray scattering spectra with and without Ni filter.

    图 5  在接收狭缝宽度为0.1 mm, 样品和探测器之间不同距离条件下测得Si (4 0 0)衍射峰的(a)高斯拟合峰和(b)数据散点图; 在样品和探测器之间距离为70 mm, 不同接收狭缝宽度条件下测得Si (4 0 0)衍射峰的(c)高斯拟合峰和(d)数据散点图

    Fig. 5.  (a) Gaussian fitting peak and (b) data scatter diagram of measured Si (4 0 0) diffraction peak when the receiving slit size is 0.1 mm, and the distances between the sample and the detector are varied; (c) gaussian fitting peak and (d) data scatter diagram of measured Si (4 0 0) diffraction peak when the distance between the sample and the detector is 70 mm, receiving slit sizes are varied.

    图 6  人民币5角硬币以及待测点示意图

    Fig. 6.  The RMB 5 Jiao coin and the detected point.

    图 7  硬币的微区X射线荧光谱

    Fig. 7.  Micro-X-ray fluorescence spectrum of the coin.

    图 8  μ-Hawk和X-pert-pro-MPD两种衍射仪测量硬币的衍射图

    Fig. 8.  Diffraction patterns measured by μ-Hawk and X-pert-pro-MPD diffractometer of the coin.

    图 9  直径为140 μm的铜导线以及待测点示意图

    Fig. 9.  Copper wire with a diameter of 140 μm and the detected point.

    图 10  直径140 μm铜导线的X射线衍射图

    Fig. 10.  Micro-X-ray diffraction pattern of copper wire with a diameter of 140 μm.

    图 11  苹果手机主板上某焊锡接触点以及探测区域示意图

    Fig. 11.  Picture of one welding joint on the motherboard of an iPhone and the detected area.

    图 12  焊锡接触点的微区X射线荧光谱

    Fig. 12.  Micro-X-ray fluorescence spectrum of the welding joint.

    图 13  焊锡接触点的微区X射线衍射图

    Fig. 13.  Micro-X-ray diffraction pattern of the welding joint.

    图 14  焊锡接触点中SnO2 (3 1 2)在1.0 mm × 0.6 mm区域内的物相分布图

    Fig. 14.  Phase mapping in 1.0 mm × 0.6 mm area of SnO2 (3 1 2) in the welding joint.

    表 1  测定衍射仪精确度的参考数据与不同角度位置的|Δd/d|

    Table 1.  Reference data for the determination of diffractometer accuracy and|Δd/d| at different angles.

    Reference dataMeasured data|Δd/d|
    PDF2θ/(°)d/nm(h k l)
    SiO2 (JCPDS 52-0784)18.05100.4910(0 0 3)0.0111
    Si (JCPDS 27-1402)69.13000.1358(4 0 0)0.0003
    CuO (JCPDS 48-1548)113.48500.0921(1 1 5)0.2596
    下载: 导出CSV

    表 2  两种衍射仪的实验条件

    Table 2.  Measurement conditions of two diffractometers.

    Itemμ-HawkX-pert-pro-MPD
    Anode materialCuCu
    XRD monochromatorNi filterNi filter
    Focal size/mm0.115 × 0.1151 × 10
    HV/kV3040
    Current/mA0.540
    2θ/(°)10—12010—90
    Step size/(°)0.10.03
    Step time/s1120
    下载: 导出CSV
  • [1]

    Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114Google Scholar

    [2]

    Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng. B 206 69Google Scholar

    [3]

    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16Google Scholar

    [4]

    Wang W Q, Ji L, Li H X, Liu X H, Zhou H D, Chen J M 2019 Chin. Phys. B 28 036802Google Scholar

    [5]

    Biberger J, Füßer H J, Klaus M, Genzel C 2017 Wear 376– 377 1502Google Scholar

    [6]

    Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697Google Scholar

    [7]

    Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143Google Scholar

    [8]

    Shen Y Y, Zhang Y X, Qi T, Qiao Y, Jia Y X, Hei H J, He Z Y, Yu S W 2016 Chin. Phys. Lett. 33 088101

    [9]

    Hampai D, Dabagov S B, Cappuccio G 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 264Google Scholar

    [10]

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Cheng L 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 442 13Google Scholar

    [11]

    Berthold C, Bjeoumikhov A, Brügemann L 2009 Part. Part. Syst. Charact. 26 107Google Scholar

    [12]

    Romano F P, Pappalardo L, Masini N, Pappalardo G, Rizzo F 2011 Microchem. J. 99 449Google Scholar

    [13]

    Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar

    [14]

    段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar

    [15]

    Wrobel P, Czyzycki M, Furman L, Kolasinski K, Lankosz M, Mrenca A, Samek L, Wegrzynek D 2012 Talanta 93 186Google Scholar

    [16]

    Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1493Google Scholar

    [17]

    Décobert J, Guillamet R, Mocuta C, Carbone G, Guerault H 2013 J. Cryst. Growth 370 154Google Scholar

    [18]

    江超华 2014 多晶X射线衍射技术与应用 (北京: 化学工业出版社) 第169页

    Jiang C H 2014 The Technique and Application of Polycrystalline X-ray Diffraction (Beijing: Chemical Industry Press) p169 (in Chinese)

    [19]

    徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar

    Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar

    [20]

    Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar

    [21]

    Baated A, Hamasaki K, Kim S S, Kim K S, Suganuma K 2011 J. Electron. Mater. 40 2278Google Scholar

    [22]

    Zhou W, Mahato D N, Macdonald C A 2010 Thin Solid Films 518 5047Google Scholar

  • [1] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2022, 71(4): 046101. doi: 10.7498/aps.71.20211674
    [2] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211674
    [4] 刘俊, 姜其立, 帅麒麟, 李融武, 潘秋丽, 程琳, 王荣. 一种点光源的自适应束斑X射线衍射仪的研制. 物理学报, 2021, 70(1): 010701. doi: 10.7498/aps.70.20201228
    [5] 牟欢, 李保权, 曹阳. 基于空间应用的透射式微型微束调制X射线源. 物理学报, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [6] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [7] 李洪涛, 罗 毅, 席光义, 汪 莱, 江 洋, 赵 维, 韩彦军, 郝智彪, 孙长征. 基于X射线衍射的GaN薄膜厚度的精确测量. 物理学报, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [8] 程 琳, 丁训良, 刘志国, 潘秋丽, 初学莲, 冯松林. 一种新型的微束X射线荧光谱仪及其在考古学中的应用. 物理学报, 2007, 56(12): 6894-6898. doi: 10.7498/aps.56.6894
    [9] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [10] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [11] 陈 敏, 肖体乔, 骆玉宇, 刘丽想, 魏 逊, 杜国浩, 徐洪杰. 微聚焦管硬x射线位相衬度成像. 物理学报, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [12] 许强, 王建宝, 袁健, 陆昉, 孙恒慧. 重掺硼快速退火分子束外延硅的X射线衍射研究. 物理学报, 1995, 44(3): 432-438. doi: 10.7498/aps.44.432
    [13] 赵宗彦, 樊晓泉, 韩家骅, 周圣明, 深町共荣, 根岸利一郎, 吉沢正美. X射线衍射动力学在原子吸收限近区的应用. 物理学报, 1995, 44(5): 734-744. doi: 10.7498/aps.44.734
    [14] 张建中, 曹嬿妮. 发散X射线晶体衍射模拟研究. 物理学报, 1990, 39(1): 124-128. doi: 10.7498/aps.39.124
    [15] 何延才, 曹立群. Monte Carlo方法计算微颗粒的X射线强度. 物理学报, 1984, 33(2): 241-249. doi: 10.7498/aps.33.241
    [16] 孙长德. 关于X射线衍射方程的Green函数解法. 物理学报, 1983, 32(8): 982-989. doi: 10.7498/aps.32.982
    [17] 李方华, 樊汉节, 张培善, 王怡华. 微区X射线能谱分析技术在研究钡-稀土氟碳酸盐矿物上的应用. 物理学报, 1983, 32(4): 460-465. doi: 10.7498/aps.32.460
    [18] 林炳昌. 轻微形变晶体X射线衍射动力学方程的微扰解. 物理学报, 1981, 30(11): 1528-1532. doi: 10.7498/aps.30.1528
    [19] 徐济安, 胡静竹. 高压下X射线衍射技术. 物理学报, 1977, 26(6): 521-525. doi: 10.7498/aps.26.521
    [20] 吴德昌, 王仁卉. 锌的X射线热漫散衍射及弹性系数. 物理学报, 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
计量
  • 文章访问数:  10456
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 修回日期:  2019-10-13
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回