搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自支撑二值化Beynon-Gabor波带片的制备及其单级聚焦特性

李兆国 孟令彪 周民杰 刁凯迪 易勇 朱效立 吴卫东 张继成

引用本文:
Citation:

自支撑二值化Beynon-Gabor波带片的制备及其单级聚焦特性

李兆国, 孟令彪, 周民杰, 刁凯迪, 易勇, 朱效立, 吴卫东, 张继成

Fabrication of self-standing binary Gabor zone plate and its single order diffraction

Li Zhao-Guo, Meng Ling-Biao, Zhou Min-Jie, Diao Kai-Di, Yi Yong, Zhu Xiao-Li, Wu Wei-Dong, Zhang Ji-Cheng
PDF
导出引用
  • Gabor波带片是一种理想的单级聚焦光学元件, 但制备困难. 本文采用聚焦离子束直写技术成功制备出30 环、20扇区的二值化Beynon-Gabor波带片, 其有效面积半径为700 m, 第一环半径90 m. 利用各向异性腐蚀液对硅基底进行开孔, 实现了Beynon-Gabor波带片二值化、自支撑、镂空的结构特征. 在波长为355 nm的激光下测试其光学性能, 结果表明所制备的Beynon-Gabor波带片主光轴上只存在1级衍射叠加后的焦点, 不存在高级衍射焦点, 具有优异的单级聚焦性能.
    The Gabor zone plate is an ideal zone plate with single focus spot, which has the potential applications in spectroscopy, X-ray imaging, etc. However, the Gabor zone plate is very difficult to prepare because of its sinusoidal transmission characteristic, thereby restricting its applications. Traditionally, the zone plate is prepared on the transparent substrate such as quartz glass, polyimide, etc. This restricts the applications of Gabor zone plates in the extreme ultraviolet and soft X-ray frequency band due to the strong absorption of quartz and polyimide in such bands.In this work, we report a method of preparing the self-standing binary Gabor zone plate by using the focused ion beam direct writing. By combining the techniques of focused ion beam and chemical wet etching, the binary Gabor zone plate with self-standing and curved structure is fabricated. The main characteristic parameters of the Gabor zone plate are as follows: the diameter of 1400 m, the radius of the first zone 90 m, the outset zone number of 60, and a gold absorber thickness of 500 nm. The focusing properties of the self-standing binary Gabor zone plate are measured at different transfer distances with a 355 nm laser. The experimental results show that the high-order focus is removed with only the first-order focus spot reserved, and the focal distance is 2.28 cm, which is in agreement with the theoretical value of 2.41 cm. The self-standing Gabor zone plate is free from the influence of the substrate. Therefore, this kind of binary Gabor zone plate has potential applications in ultraviolet and soft X-ray regions.
      通信作者: 张继成, zhangjccaep@126.com
    • 基金项目: 国家自然科学基金(批准号: 11404304, 60908023)和国家重大科学仪器设备开发专项(批准号: 2014YQ090709)资助的课题.
      Corresponding author: Zhang Ji-Cheng, zhangjccaep@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404304, 60908023) and the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2014YQ090709).
    [1]

    Vila-Comamala J, Borris X, Prez-Murano F, Campos J, Ferrer S 2006 Microelectron. Eng. 83 1355

    [2]

    Wang Y, Yun W, Jacobsen C 2003 Nature 424 50

    [3]

    Tao S H, Yuan X C, Lin J, Burge R E 2006 Appl. Phys. Lett. 89 031105

    [4]

    Shu J H, Chen Z Y, Pu J X, Liu Y X 2011 Chin. Phys. B 20 114202

    [5]

    Gimnez F, Monsoriu J A, Furlan W D, Pons A 2006 Opt. Express 14 11958

    [6]

    Fabrizio E D, Romanato F, Gentili M, Cabrini S, Kaulich B, Susini J, Barrett R 1999 Nature 401 895

    [7]

    Srisungsitthisunti P, Ersoy O K, Xu X 2009 J. Opt. Soc. Am. A 26 2114

    [8]

    Chu Y S, Yi J M, de Carlo F, Shen Q, Lee W K, Wu H J, Wang C L, Wang J Y, Liu C L, Wang C H, Wu S R, Chien C C, Hwu Y, Tkachuk A, Yun W, Feser M, Liang K S, Yang C S, Je J H, Margaritondo G 2008 Appl. Phys. Lett. 92 103119

    [9]

    Gorelick S, Vila-Comamala J, Guzenko V A, Barrett R, Salom M, David C 2011 J. Synchrotron Radiat. 18 442

    [10]

    Zhang Y, Qi H J, Yi K, Wang Y Z, Sui Z, Shao J D 2015 Chin. Phys. B 24 054212

    [11]

    Huang C L, Zhang J C, Diao K D, Zeng Y, Yi Y, Cao L F, Wang H B 2014 Acta Phys. Sin. 63 018101 (in Chinese) [黄成龙, 张继成, 刁凯迪, 曾勇, 易勇, 曹磊峰, 王红斌 2014 物理学报 63 018101]

    [12]

    Zhang J C, Liu Y W, Huang C L, Zhang Q Q, Yi Y, Zeng Y, Zhu X L, Fan Q P, Qian F, Wei L, Wang H B, Wu W D, Cao L F 2014 Chin. Phys. Lett. 31 124204

    [13]

    Cao L F, Frster E, Fuhrmann A, Wang C K, Kuang L Y, Liu S Y, Ding Y K 2007 Appl. Phys. Lett. 90 053501

    [14]

    Wang C K, Kuang L Y, Wang Z B, Liu S Y, Ding Y K, Cao L F, Foerster E, Wang D Q, Xie C Q, Ye T C 2007 Rev. Sci. Instrum. 78 053503

    [15]

    Wang C K, Kuang L Y, Wang Z B, Cao L F, Liu S Y, Ding Y K, Wang D Q, Xie C Q, Ye T C, Hu G Y 2008 Rev. Sci. Instrum. 79 123502

    [16]

    Beynon T D, Kirk I, Mathews T R 1992 Opt. Lett. 17 544

    [17]

    Choy C M, Cheng L M 1994 Appl. Opt. 33 794

    [18]

    Wei L, Kuang L Y, Fan W, Zang H P, Cao L F, Gu Y Q, Wang X F 2011 Opt. Express 19 21419

    [19]

    Fan W, Wei L, Zang H P, Cao L F, Zhu B, Zhu X L, Xie C Q, Gao Y L, Zhao Z Q, Gu Y Q 2013 Opt. Express 21 1473

    [20]

    Greve M M, Vial A M, Stamnes J J, Holst B 2013 Opt. Express 21 28483

  • [1]

    Vila-Comamala J, Borris X, Prez-Murano F, Campos J, Ferrer S 2006 Microelectron. Eng. 83 1355

    [2]

    Wang Y, Yun W, Jacobsen C 2003 Nature 424 50

    [3]

    Tao S H, Yuan X C, Lin J, Burge R E 2006 Appl. Phys. Lett. 89 031105

    [4]

    Shu J H, Chen Z Y, Pu J X, Liu Y X 2011 Chin. Phys. B 20 114202

    [5]

    Gimnez F, Monsoriu J A, Furlan W D, Pons A 2006 Opt. Express 14 11958

    [6]

    Fabrizio E D, Romanato F, Gentili M, Cabrini S, Kaulich B, Susini J, Barrett R 1999 Nature 401 895

    [7]

    Srisungsitthisunti P, Ersoy O K, Xu X 2009 J. Opt. Soc. Am. A 26 2114

    [8]

    Chu Y S, Yi J M, de Carlo F, Shen Q, Lee W K, Wu H J, Wang C L, Wang J Y, Liu C L, Wang C H, Wu S R, Chien C C, Hwu Y, Tkachuk A, Yun W, Feser M, Liang K S, Yang C S, Je J H, Margaritondo G 2008 Appl. Phys. Lett. 92 103119

    [9]

    Gorelick S, Vila-Comamala J, Guzenko V A, Barrett R, Salom M, David C 2011 J. Synchrotron Radiat. 18 442

    [10]

    Zhang Y, Qi H J, Yi K, Wang Y Z, Sui Z, Shao J D 2015 Chin. Phys. B 24 054212

    [11]

    Huang C L, Zhang J C, Diao K D, Zeng Y, Yi Y, Cao L F, Wang H B 2014 Acta Phys. Sin. 63 018101 (in Chinese) [黄成龙, 张继成, 刁凯迪, 曾勇, 易勇, 曹磊峰, 王红斌 2014 物理学报 63 018101]

    [12]

    Zhang J C, Liu Y W, Huang C L, Zhang Q Q, Yi Y, Zeng Y, Zhu X L, Fan Q P, Qian F, Wei L, Wang H B, Wu W D, Cao L F 2014 Chin. Phys. Lett. 31 124204

    [13]

    Cao L F, Frster E, Fuhrmann A, Wang C K, Kuang L Y, Liu S Y, Ding Y K 2007 Appl. Phys. Lett. 90 053501

    [14]

    Wang C K, Kuang L Y, Wang Z B, Liu S Y, Ding Y K, Cao L F, Foerster E, Wang D Q, Xie C Q, Ye T C 2007 Rev. Sci. Instrum. 78 053503

    [15]

    Wang C K, Kuang L Y, Wang Z B, Cao L F, Liu S Y, Ding Y K, Wang D Q, Xie C Q, Ye T C, Hu G Y 2008 Rev. Sci. Instrum. 79 123502

    [16]

    Beynon T D, Kirk I, Mathews T R 1992 Opt. Lett. 17 544

    [17]

    Choy C M, Cheng L M 1994 Appl. Opt. 33 794

    [18]

    Wei L, Kuang L Y, Fan W, Zang H P, Cao L F, Gu Y Q, Wang X F 2011 Opt. Express 19 21419

    [19]

    Fan W, Wei L, Zang H P, Cao L F, Zhu B, Zhu X L, Xie C Q, Gao Y L, Zhao Z Q, Gu Y Q 2013 Opt. Express 21 1473

    [20]

    Greve M M, Vial A M, Stamnes J J, Holst B 2013 Opt. Express 21 28483

  • [1] 肖懿鑫, 朱天翔, 梁澎军, 王奕洋, 周宗权, 李传锋. 聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁研究. 物理学报, 2024, 73(22): 1-9. doi: 10.7498/aps.73.20241070
    [2] 续文龙, 开玥, 张锴, 郑百林. 基于粗粒化分子动力学的自支撑石墨烯镜面屈曲研究. 物理学报, 2023, 72(24): 246801. doi: 10.7498/aps.72.20231120
    [3] 彭若波, 董国华, 刘明. 自支撑单晶氧化物薄膜的应用研究进展. 物理学报, 2023, 72(9): 098502. doi: 10.7498/aps.72.20222382
    [4] 武鹏, 张涛, 张进成, 郝跃. 低反向漏电自支撑衬底AlGaN/GaN肖特基二极管. 物理学报, 2022, 71(15): 158503. doi: 10.7498/aps.71.20220161
    [5] VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵. 气体团簇离子束两步能量修形法的平坦化效应. 物理学报, 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [6] 陈珊珊, 刘幸, 刘之光, 李家方. 基于聚焦离子束纳米剪纸/折纸形变的三维微纳制造技术及其光学应用. 物理学报, 2019, 68(24): 248101. doi: 10.7498/aps.68.20191494
    [7] 张诚, 邓明森, 蔡绍洪. 基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极. 物理学报, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [8] 盛洁, 张国梁, 李玉强, 朱涛, 蒋中英. 荧光显微镜研究极端pH值诱导磷脂支撑膜的侧向再组织. 物理学报, 2014, 63(6): 068702. doi: 10.7498/aps.63.068702
    [9] 黄成龙, 张继成, 刁凯迪, 曾勇, 易勇, 曹磊峰, 王红斌. 单级衍射量子点阵光栅的聚焦离子束直写法制备及光学性能检测. 物理学报, 2014, 63(1): 018101. doi: 10.7498/aps.63.018101
    [10] 乐阳阳, 肖寒, 王子潇, 吴敏. 关于Airy光束衍射及自加速性质的研究. 物理学报, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [11] 李方家, 刘军, 李儒新. 基于自衍射效应的自参考光谱干涉方法的研究. 物理学报, 2013, 62(6): 064211. doi: 10.7498/aps.62.064211
    [12] 陈勇, 邱克强, 徐向东, 刘正坤, 刘颖, 付绍军. 1000线/毫米软X射线自支撑闪耀透射光栅的设计与制作. 物理学报, 2012, 61(12): 120702. doi: 10.7498/aps.61.120702
    [13] 马杰, 谢常青, 叶甜春, 刘明. 自支撑透射光栅的设计、制作和测试. 物理学报, 2010, 59(4): 2564-2570. doi: 10.7498/aps.59.2564
    [14] 许兴胜, 熊志刚, 金爱子, 陈弘达, 张道中. 聚焦离子束研制半导体材料光子晶体. 物理学报, 2007, 56(2): 916-921. doi: 10.7498/aps.56.916
    [15] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶材烧蚀效应二维数值研究. 物理学报, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [16] 李玉同, 张 杰, 鲁 欣, 金 展, D. A. Pepler, C. N. Danson. 使用二元相位菲涅尔波带片产生轴向线聚焦. 物理学报, 2005, 54(5): 2030-2033. doi: 10.7498/aps.54.2030
    [17] 杨海亮, 邱爱慈, 李静雅, 孙剑锋, 何小平, 汤俊萍, 王海洋, 黄建军, 任书庆, 邹丽丽, 杨 莉. 叠片法测量“闪光二号”加速器的高功率离子束能谱. 物理学报, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [18] 富笑男, 李新建. 一种自支撑金纳米薄膜的制备、结构和氮吸附特性. 物理学报, 2005, 54(11): 5257-5261. doi: 10.7498/aps.54.5257
    [19] 吴 迪, 宫 野, 刘金远, 王晓钢. 强流脉冲离子束与靶作用域值的研究. 物理学报, 2005, 54(4): 1636-1640. doi: 10.7498/aps.54.1636
    [20] 吴正云, 黄启圣. 聚焦Ga+离子束注入方法研制半导体量子线结构. 物理学报, 1996, 45(3): 486-490. doi: 10.7498/aps.45.486
计量
  • 文章访问数:  5315
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-29
  • 修回日期:  2016-02-25
  • 刊出日期:  2016-06-05

/

返回文章
返回