搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低反向漏电和高开关比自支撑准垂直GaN肖特基二极管

路博文 许晟瑞 黄永 苏华科 陶鸿昌 谢磊 丁小龙 荣晓燃 刘劭珂 贾敬宇 张进成 郝跃

引用本文:
Citation:

低反向漏电和高开关比自支撑准垂直GaN肖特基二极管

路博文, 许晟瑞, 黄永, 苏华科, 陶鸿昌, 谢磊, 丁小龙, 荣晓燃, 刘劭珂, 贾敬宇, 张进成, 郝跃

Quasi vertical GaN Schottky diode on self-supporting substrate with low reverse leakage and high switching ratio

LU Bowen, XU Shengrui, HUANG Yong, SU Huake, TAO Hongchang, XIE Lei, DING Xiaolong, RONG Xiaoran, LIU Shaoke, JIA Jingyu, ZHANG Jincheng, HAO Yue
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • GaN基肖特基势垒二极管(SBD)器件具有功率密度高、转换效率高以及开关特性好等优点. GaN材料在异质外延过程中不可避免地会引入大量的位错, 而位错会导致器件的可靠性问题. 本文报道了一种在自支撑GaN衬底上生长并制备的超低位错密度N+/N GaN 准垂直SBD器件. 高分辨X射线衍射仪和原子力显微镜表征结果显示, 在自支撑GaN衬底上实现了总位错密度为1.01 × 108 cm–2, 表面均方根粗糙度为0.149 nm的高质量外延层的生长. 基于高质量外延层制备的器件在不使用任何终端、场板以及等离子体处理的情况下, 在反向电压为–5 V时表现出10–5 A/cm2的极低泄漏电流密度, 与在蓝宝石衬底上同步制备的对照组器件相比, 反向泄漏电流低4个数量级. 实验结果表明, 基于自支撑GaN衬底的准垂直GaN基SBD能够大幅度降低器件的反向漏电, 极大地提升准垂直SBD器件的电学性能. 使用微光显微镜对两组器件进行观察, 确定了准垂直SBD器件的泄漏电流主要集中在阳极边缘, 并解释了漏电机理. 最后对器件进行了变温测试, 在温度为100 ℃时, 仍表现出低于10–3 A/cm3的泄漏电流, 证明了自支撑GaN衬底上准垂直SBD器件具有优良的应用前景.
    GaN based Schottky barrier diode (SBD) possesses advantages including high power density, high conversion efficiency, and excellent switching characteristics. During heteroepitaxial growth of GaN, a high density of threading dislocations is inevitably introduced, which can degrade device reliability. This paper reports a low dislocation density N+/N GaN quasi-vertical SBD fabricated on a freestanding GaN substrate. The characterization results of high-resolution X-ray diffraction and atomic force microscopy demonstrate that the high-quality epitaxial layer with a total dislocation density of 1.01 × 108 cm–2 and a root mean square surface roughness of 0.149 nm is achieved on a freestanding GaN substrate. The device prepared based on a high-quality epitaxial layer exhibits an ultra-low leakage current density of 10–5 A/cm2 at a reverse voltage of –5 V, without employing any edge termination structures or field plates or plasma treatment. Compared with the devices prepared on sapphire substrates using identical processes, the device prepared in this work reduces the reverse leakage current by four orders of magnitude. The experimental results show that the quasi-vertical GaN based SBD fabricated on a freestanding GaN substrate significantly reduces reverse leakage current and substantially enhances the overall electrical performance of the device. By employing emission-microscope (EMMI), leakage current in quasi-vertical SBD is identified to be primarily localized at the anode edge, and the underlying leakage mechanism is elucidated. Finally, temperature-dependent measurements demonstrate that the device maintains a leakage current below 10–3 A/cm2 at 100 ℃, confirming the potential of quasi-vertical SBD on freestanding GaN substrate for practical applications.
  • 图 1  准垂直GaN SBD器件的制备工艺流程图

    Fig. 1.  Preparation process flow chart of quasi vertical GaN SBD device.

    图 2  准垂直结构GaN SBD器件的SEM图

    Fig. 2.  SEM image of GaN SBD device with quasi vertical structure.

    图 3  样品a和样品b的(002)面(a)和(102)面(b)的XRD摇摆曲线图

    Fig. 3.  XRD rocking curves of (002) plane (a) and (102) plane (b) of samples a and b.

    图 4  样品a和样品b的AFM测试图

    Fig. 4.  AFM images of sample a and sample b.

    图 5  样品a和样品b室温下Raman图

    Fig. 5.  Raman spectra of sample a and sample b at room temperature.

    图 6  器件a和器件b在半对数坐标下的正反向I-V曲线

    Fig. 6.  Forward and reverse I-V curves of device a and device b in semi-logarithmic coordinates.

    图 7  器件a和器件b的击穿特性曲线

    Fig. 7.  Breakdown characteristic curves of device a and device b.

    图 8  半对数坐标下器件a(左)和器件b(右)正反向I-V特性随温度的变化关系

    Fig. 8.  Forward and backward I-V characteristics of device a (left) and device b (right) with temperature in semi-logarithmic coordinates.

    图 9  反向偏压10 V下器件a(左)和器件b(右)的EMMI图像

    Fig. 9.  EMMI images of device a (left) and device b (right) under reverse bias of 10 V.

    表 1  两组样品在(002)和(102)晶面的半高宽(FWHM)和位错密度

    Table 1.  FWHM and dislocation density of two groups of samples on the (002) and (102) crystal plane.

    编号(002)/
    arcsec
    (102)/
    arcsec
    螺位错密
    度/cm–2
    刃位错密
    度/cm–2
    总位错密
    度/cm–2
    样品a961251.85×1078.28×1071.01×108
    样品b3197172.04×1082.73×1092.93×109
    下载: 导出CSV
  • [1]

    Liu X, Xu S R, Zhang T, Tao H C, Su H K, Gao Y, Xie L, Wang X H, Zhang J C, H Y 2025 Appl. Phys. Lett. 126 202103Google Scholar

    [2]

    徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 物理学报 72 196101Google Scholar

    Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 196101Google Scholar

    [3]

    Su H K, Xu S R, Tao H C, Fan X M, Du J J, Peng R S 2021 IEEE Electron Device Lett. 10 1109

    [4]

    许钪, 许晟瑞, 陶鸿昌, 苏华科, 高源, 杨赫, 安暇, 黄俊, 张进成, 郝跃 2024 电子学报 52 3907

    Xu K, Xu S R, Tao H C, Su H K, Gao Y, Yang H, An X, Huang J, Zhang J C, Hao Y 2024 Acta Electron. Sin. 52 3907

    [5]

    Su H K, Zhang T, Xu S R, Tao H C, Gao Y, Liu X, Xie L, Xiang P, Cheng K, Hao Y, Zhang J C 2024 Appl. Phys. Lett. 124 162102Google Scholar

    [6]

    Tan G H, Yan F, Chen X L, Luo W K 2018 Appl. Opt. 10 1364

    [7]

    Brendel M, Helbling M, Knigge A, Brunner F, Weyers M 2015 Electron. Lett. 51 1598Google Scholar

    [8]

    Zhang Y, Wong H Y, Sun M, Joglekar S, Yu L, Braga N A 2015 IEDM 10 1109

    [9]

    Jin W Y, Zhang Y M, Xia S Y, Zhu Q Z, Sun Y H, Yi J M, Wang J F, Xu K 2024 AIP Adv. 14 095118Google Scholar

    [10]

    Xu J Y, Liu X, Xie B, Hao Y L, Wen C P, Wei J 2023 IEEE Trans. Electron. Device 32 41260

    [11]

    Liao Y Q, Chen T, Wang J, Cai W T, Ando Y, Yang X, Watanabe H, Tanaka A 2022 Appl. Phys. Lett. 120 122109Google Scholar

    [12]

    Yoshizumi Y, Hashimoto S, Tanabe T, Kiyama M 2007 J. Cryst. Growth 298 8758

    [13]

    Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101Google Scholar

    [14]

    Lu H, Xu S R, Huang Y, Chen X, Xu S, Liu X, Wang X H, Gao Y, Zhang Y C, Duan X L, Zhang J C, H Y 2024 J. Inorg. Mater. 202 30490

    [15]

    Lu X, Liu C, Jiang H X, Zou X B, Zhang A P, Lau K M 2016 Appl. Phys. Express 9 031001Google Scholar

    [16]

    Li Q B, Liu G X, Wang S Z, Liu L, Yu J X, Wang G D, Cui P, Zhang S Y, Xu X G, Zhang L 2025 Surf. Interfaces 56 105554Google Scholar

    [17]

    Liu W S, Wu S H, Balaji G, Huang L C, Chi C K, Hu K J, Kuo H C 2024 Appl. Phys. A 130 801Google Scholar

    [18]

    武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, H Y, 2022 Acta Phys. Sin. 71 158503Google Scholar

    [19]

    Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett 108 062103Google Scholar

    [20]

    Chen J B, Bian Z K, Liu Z H, Ning J, Duan X L, Zhao S L, Wang H Y, Tang Q, Wu Y H, Song Y Q, Zhang J C, Hao Y 2019 Semicond. Sci. Technol. 34 115019Google Scholar

    [21]

    Lambert D J H, Zhu T G, Shelton B S, Wong M M, Chowdhury U, Dupuis R D 2000 Appl. Phys. Lett. 77 2918Google Scholar

    [22]

    Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol 27 085015Google Scholar

    [23]

    Zhang Y H, Sun M, Piedra D, Azize M, Zhang X, Fujishima T 2014 IEEE Trans. Electron Devices 10 1109

    [24]

    Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattices Microstruct. 125 295Google Scholar

    [25]

    Tokuda H, Watanabe F, Syahiman A, Kuzuhara M, Fujiwara T 2011 IEEE MTT-S 10 1109

    [26]

    Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y 2014 IEEE J. Electron Devices Soc. 6 168

    [27]

    Sang L W, Ren B, Sumiya M, Liao M, Koide Y 2017 Appl. Phys. Lett. 111 122102Google Scholar

    [28]

    Kim B, Moon D, Joo K, Oh S, Lee Y K, Park Y, Nanishi Y, Yoon E 2014 Appl. Phys. Lett. 104 102101Google Scholar

    [29]

    Wang J, You H F, Guo H, Xue J J, Yang G F, Chen D J, Liu B, Lu H, Zhang R, Zheng Y D 2020 Appl. Phys. Lett. 116 062104Google Scholar

  • [1] 丰睿, 张忠一, 陈春华, 尚博林, 李冬梅, 余鹏. 过冷液相区退火调控Ni-Fe-B-Si-P非晶态合金的微观结构与电学性能. 物理学报, doi: 10.7498/aps.74.20250368
    [2] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.71.20221247
    [3] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, doi: 10.7498/aps.70.20210936
    [4] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能. 物理学报, doi: 10.7498/aps.69.20201317
    [5] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, doi: 10.7498/aps.69.20200309
    [6] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, doi: 10.7498/aps.69.20191344
    [7] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, doi: 10.7498/aps.68.20190133
    [8] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, doi: 10.7498/aps.68.20191153
    [9] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰. Ni/Au/n-GaN肖特基二极管可导位错的电学模型. 物理学报, doi: 10.7498/aps.67.20180762
    [10] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析. 物理学报, doi: 10.7498/aps.66.216102
    [11] 何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平. 基于变温霍尔效应方法的一类n-GaN位错密度的测量. 物理学报, doi: 10.7498/aps.66.067201
    [12] 何菊生, 张萌, 潘华清, 齐维靖, 李平. 一种测量纤锌矿n-GaN位错密度的新方法. 物理学报, doi: 10.7498/aps.65.167201
    [13] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究. 物理学报, doi: 10.7498/aps.62.158101
    [14] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, doi: 10.7498/aps.62.118101
    [15] 张振江, 胡小会, 孙立涛. 单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变. 物理学报, doi: 10.7498/aps.62.177101
    [16] 张滨, 杨银堂, 李跃进, 徐小波. SOI SiGe HBT电学性能研究. 物理学报, doi: 10.7498/aps.61.238502
    [17] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, doi: 10.7498/aps.61.142301
    [18] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究. 物理学报, doi: 10.7498/aps.59.4253
    [19] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, doi: 10.7498/aps.57.1851
    [20] 王林军, 刘健敏, 苏青峰, 史伟民, 夏义本. 金刚石膜α粒子探测器的电学性能研究. 物理学报, doi: 10.7498/aps.55.2518
计量
  • 文章访问数:  439
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-08
  • 修回日期:  2025-06-30
  • 上网日期:  2025-08-14

/

返回文章
返回