搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低反向漏电和高开关比自支撑准垂直GaN肖特基二极管

路博文 许晟瑞 黄永 苏华科 陶鸿昌 谢磊 丁小龙 荣晓燃 刘劭珂 贾敬宇 张进成 郝跃

引用本文:
Citation:

低反向漏电和高开关比自支撑准垂直GaN肖特基二极管

路博文, 许晟瑞, 黄永, 苏华科, 陶鸿昌, 谢磊, 丁小龙, 荣晓燃, 刘劭珂, 贾敬宇, 张进成, 郝跃

Investigation of quasi vertical GaN Schottky diode on self-supporting substrate with low reverse leakage and high switching ratio

LU Bowen, XU Shengrui, HUANG Yong, SU Huake, TAO Hongchang, XIE Lei, DING Xiaolong, RONG Xiaoran, LIU Shaoke, JIA Jingyu, ZHANG Jincheng, HAO Yue
Article Text (iFLYTEK Translation)
PDF
导出引用
  • GaN基肖特基势垒二极管(SBD)器件具有功率密度高、转换效率高以及开关特性好等优点。GaN材料在异质外延过程中不可避免地会引入大量的位错,而位错会导致器件的可靠性问题。本文报道了一种在自支撑GaN衬底上生长并制备的超低位错密度N+/N- GaN准垂直SBD器件。高分辨X射线衍射仪和原子力显微镜表征结果显示,在自支撑GaN衬底上实现了总位错密度为1.01×108cm-2,表面均方根粗糙度为0.149nm的高质量外延层的生长。基于高质量外延层制备的器件在不使用任何终端、场板以及等离子体处理的情况下,在反向电压为-5V时表现出10-5A/cm2的极低泄漏电流密度,与在蓝宝石衬底上同步制备的对照组器件相比,反向泄漏电流低4个数量级。实验结果表明,基于自支撑GaN衬底的准垂直GaN基SBD能够大幅度降低器件的反向漏电,极大地提升准垂直SBD器件的电学性能。使用微光显微镜对两组器件进行观察,确定了准垂直SBD器件的泄漏电流主要集中在阳极边缘,并解释了漏电机理。最后对器件进行了变温测试,在温度为100℃时,仍表现出低于10-3A/cm3的泄露电流,证明了自支撑GaN衬底上准垂直SBD器件具有优良的应用前景。
    GaN based Schottky barrier diode (SBD) offer advantages including high power density, high conversion efficiency, and excellent switching characteristics. During heteroepitaxial growth of GaN, a high density of threading dislocations is inevitably introduced, which can degrade device reliability. This paper reports a low dislocation density N+/N- GaN quasi-vertical SBD fabricated on a freestanding GaN substrate. The characterization results of high-resolution X-ray diffraction and atomic force microscopy demonstrate that the high-quality epitaxial layer with a total dislocation density of 1.01×108 cm-2 and a root mean square surface roughness of 0.149 nm has been achieved on a freestanding GaN substrate. Devices prepared based on high-quality epitaxial layer exhibit an ultra-low leakage current density of 10-5 A/cm2 at a reverse voltage of -5V, without employing any edge termination structures, field plates, or plasma treatment. Compared with the devices prepared on sapphire substrates using identical processes, the reverse leakage current demonstrates a reduction by four orders of magnitude. The experimental results show that the quasi-vertical GaN based SBD fabricated on a freestanding GaN substrate significantly reduces reverse leakage current and substantially enhances the overall electrical performance of the device. By employing micro-microscope, leakage current in quasi-vertical SBDs was identified to be primarily localized at the anode edges, and the underlying leakage mechanism was elucidated. Finally, temperature-dependent measurements demonstrated the device maintains a leakage current below 10-3 A/cm2 at 100℃, confirming the potential of quasi-vertical SBD on freestanding GaN substrate for practical applications.
  • [1]

    Liu X,Xu S R,Zhang Tao,Tao H C,Su H K,Gao Y,Xie L,Wang X H,Zhang J C,H Y 2025 Appl. Phys. Lett. 126 202103

    [2]

    Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin.72 196101 (in Chinese) [徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 物理学报 72 196101]

    [3]

    Su H K, Xu S R, Tao H C, Fan X M, Du J J, Peng R S 2021 IEEE Electron Device Lett. 10 1109

    [4]

    Xu K, Xu S R, Tao H C, Su H K, Gao Y, Yang H, An X, Huang J, Zhang J C, Hao Y 2024 CJE 52 12 (in Chinese) [许钪,许晟瑞,陶鸿昌,苏华科,高源,杨赫,安暇,黄俊,张进成,郝跃]

    [5]

    Su H K, Zhang T, Xu S R, Tao H C, Gao Y, Liu X, Xie L, Xiang P, Cheng K, Hao Y, Zhang J C 2024 Appl. Phys. Lett. 124, 162102

    [6]

    Tan G H, Yan F, Chen X L, Luo W K 2018 Appl.Optics.10 1364

    [7]

    Brendel M, Helbling M, Knigge A, Brunner F, Weyers M 2015 Electr L. 51 1598-1600

    [8]

    Zhang Y, Wong H Y, Sun M, Joglekar S, Yu L, Braga N A 2015 IEDM 10 1109

    [9]

    Jin W Y,Zhang Y M,Xia S Y,Zhu Q Z,Sun Y H,Yi J M,Wang J F,Xu K 2024 AIP Advances 14 095118

    [10]

    Xu J Y,Liu X,Xie B,Hao Y L,Wen C P,Wei J 2023 IEEE Trans. Electron Device 32 41260

    [11]

    Liao Y Q,Chen T,Wang J,Cai W T,Ando Y,Yang X,Watanabe H,Tanaka A 2022 Appl. Phys. Lett. 120 122109

    [12]

    Yoshizumi Y, Hashimoto S, Tanabe T, Kiyama M 2007 J. Cryst. Growth 298 8758

    [13]

    Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101

    [14]

    Lu H,Xu S R,Huang Y,Chen X,Xu S,Liu X,Wang X H,Gao Y,Zhang Y C,Duan X L,Zhang J C,H Y 2024 J.Inorg.Mater.202 30490

    [15]

    Lu X, Liu C, Jiang H X, Zou X B, Zhang A P, Lau K M 2016 Appl. Phys. Express 9 031001

    [16]

    Li Q B, Liu G X, Wang S Z, Liu L, Yu J X, Wang G D, Cui P, Zhang S Y, Xu X G, Zhang L 2025 Surf. Interfaces 56 105554

    [17]

    Liu W S, Wu S H, Balaji G, Huang L C, Chi C K, Hu K J, Kuo H C 2024 Appl Phys A 130 801

    [18]

    Wu P, Zhang T, Zhang J C, H Y, 2022 Acta Phys. Sin 71 158503 (in Chinese) [武鹏,张涛,张进成,郝跃 2022 物理学报 71 158503]

    [19]

    Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett 108 062103

    [20]

    Chen J B, Bian Z K, Liu Z H, Ning J, Duan X L, Zhao S L, Wang H Y, Tang Q, Wu Y H, Song Y Q, Zhang J C, Hao Y Semicond. Sci. Techno 34 115019

    [21]

    Lambert D. J. H, Zhu T G, Shelton. B. S, Wong M M, Chowdhury U, Dupuis R. D 2000 Appl. Phys. Lett. 77, 2918–2920

    [22]

    Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol. 27 085015

    [23]

    Zhang Y H, Sun M, Piedra D, Azize M, Zhang X, Fujishima T 2014 IEEE Trans. Electron Device 10 1109

    [24]

    Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattice Microst 125 295-301

    [25]

    Tokuda H, Watanabe F, Syahiman A, Kuzuhara M, Fujiwara T 2011 IEEE MTT-S 10 1109

    [26]

    Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y 2014 IEEE J. Electron Devices Soc. 6 168-173

    [27]

    Sang L W, Ren B, Sumiya M, Liao M, Koide Y 2017 Appl. Phys. Lett. 111, 122102

    [28]

    Bumho K, Daeyoung M, Kisu J, Sewoung Oh, Young Kuk Lee, Yongjo Park, Yasushi Nanishi, Euijoon Yoon Appl. Phys. Lett. 104, 102101

    [29]

    Wang J, You H F,Guo H,Xue J J,Yang G F,Chen D J,Liu B,Lu H,Zhang r,Zheng Y D Appl. Phys. Lett. 116, 062104

  • [1] 丰睿, 张忠一, 陈春华, 尚博林, 李冬梅, 余鹏. 过冷液相区退火调控Ni-Fe-B-Si-P非晶态合金的微观结构与电学性能. 物理学报, doi: 10.7498/aps.74.20250368
    [2] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.71.20221247
    [3] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, doi: 10.7498/aps.70.20210936
    [4] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能. 物理学报, doi: 10.7498/aps.69.20201317
    [5] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, doi: 10.7498/aps.69.20200309
    [6] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, doi: 10.7498/aps.69.20191344
    [7] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, doi: 10.7498/aps.68.20190133
    [8] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, doi: 10.7498/aps.68.20191153
    [9] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析. 物理学报, doi: 10.7498/aps.66.216102
    [10] 何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平. 基于变温霍尔效应方法的一类n-GaN位错密度的测量. 物理学报, doi: 10.7498/aps.66.067201
    [11] 何菊生, 张萌, 潘华清, 齐维靖, 李平. 一种测量纤锌矿n-GaN位错密度的新方法. 物理学报, doi: 10.7498/aps.65.167201
    [12] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究. 物理学报, doi: 10.7498/aps.62.158101
    [13] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, doi: 10.7498/aps.62.118101
    [14] 张振江, 胡小会, 孙立涛. 单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变. 物理学报, doi: 10.7498/aps.62.177101
    [15] 张滨, 杨银堂, 李跃进, 徐小波. SOI SiGe HBT电学性能研究. 物理学报, doi: 10.7498/aps.61.238502
    [16] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, doi: 10.7498/aps.61.142301
    [17] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究. 物理学报, doi: 10.7498/aps.59.4253
    [18] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟. 物理学报, doi: 10.7498/aps.58.151
    [19] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, doi: 10.7498/aps.57.1851
    [20] 王林军, 刘健敏, 苏青峰, 史伟民, 夏义本. 金刚石膜α粒子探测器的电学性能研究. 物理学报, doi: 10.7498/aps.55.2518
计量
  • 文章访问数:  62
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-14

/

返回文章
返回