搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au-BiFeO3纳米复合薄膜的电学和光伏性能优化

张亚菊 谢忠帅 郑海务 袁国亮

引用本文:
Citation:

Au-BiFeO3纳米复合薄膜的电学和光伏性能优化

张亚菊, 谢忠帅, 郑海务, 袁国亮

Optimization of electrical and photovoltaic properties of Au-BiFeO3 nanocomposite films

Zhang Ya-Ju, Xie Zhong-Shuai, Zheng Hai-Wu, Yuan Guo-Liang
PDF
HTML
导出引用
  • 存在对称性破缺引起的自极化及通过外界刺激可以改变其极化状态的铁电薄膜, 是一类重要的光电功能材料. 铁电薄膜的光伏效应在光探测、能量转换和非易失性存储等领域表现出了潜在应用前景. 针对铁电薄膜光电流密度较小, 且存在退极化现象导致的光伏性能退化问题, 有必要寻求提高薄膜自极化的新途径, 并对其导电性进行调控, 进一步优化铁电薄膜的光伏性能. 本文采用溶胶-凝胶法在FTO导电玻璃上沉积了Au纳米粒子弥散分布在铁酸铋(BiFeO3, BFO)薄膜中的Au-BFO纳米复合薄膜, 研究了Au含量(0, 0.25 mol%, 0.5 mol%, 1 mol%和3 mol%)与此复合薄膜微观组织、电学和光伏性能的关系, 以确定Au的最佳添加量. 压电力显微镜的测量结果表明, Au含量为0.5 mol%时, Au-BFO纳米复合薄膜具有较强的自极化现象. 随着Au含量的增大, Au-BFO纳米复合薄膜的导电机制由肖特基发射模型转变为空间电荷限制电流. 对复合薄膜的光伏性能进行测试, 结果表明Au含量为0.5 mol%时, Au-BFO纳米复合薄膜的开路电压和短路电流分别是BFO薄膜的近3和5倍. Au-BFO纳米复合薄膜光伏效应的改善主要来源于复合薄膜的自极化现象增强和导电机制转变. 本文提拱了一种简单有效的改善铁电薄膜光伏效应的方法, 为进一步理解铁电薄膜的光伏效应提供了新的视角.
    Ferroelectric films, are an important class of photoelectric functional material, which possess the following characteristics: the breaking of their symmetry can lead to self-polarization and this polarization state can be regulated by external stimuli. The photovoltaic properties of ferroelectric films have been extensively investigated due to their potential applications in the field of photodetection, energy conversion harvesting and nonvolatile storage. In view of the small photocurrent density and the degradation of photovoltaic property caused by the depolarization effect in ferroelectric films, it is necessary to explore an approach to improving the self-polarization phenomenon and regulating the conduction mechanism to further optimize their photovoltaic properties. Here in this work, BiFeO3 (BFO) films dispersed with Au nanoparticles are deposited on FTO glass substrates by the sol-gel method to obtain the Au-BFO nanocomposite films. Moreover, the relationships between Au content (0 mol%, 0.25 mol%, 0.5 mol%, 1 mol% and 3 mol%) and microstructure, electrical and photovoltaic properties of Au-BFO nanocomposite films are investigated to determine the optimal Au content. Piezoresponse force microscopy studies show that the Au-BFO nanocomposite film with 0.5 mol% Au has the strong self-polarization phenomenon. With the increase of Au content, the conduction mechanism of the Au-BFO nanocomposite films is described by the space-charge limited current theory but not the Schottky emission model any more. The photovoltaic properties of the Au-BFO nanocomposite films first increase and then decrease. When Au content is 0.5 mol%, the Au-BFO nanocomposite film has the best photovoltaic property. The open-circuit voltage and short-circuit photocurrent density of the Au-BFO nanocomposite film with 0.5 mol% Au increase nearly 3 and 5 times counterparts of the BFO film, respectively. The photovoltaic effects of Au-BFO nanocomposite films are improved mainly by regulating the self-polarization phenomenon and conduction mechanism. This study demonstrates the merits of BFO films dispersed with Au nanoparticles, specifically, the photovoltaic properties of Au-BFO nanocomposite films are further optimized. In this work, we propose a simple and effective method to regulate the electrical and photovoltaic properties of ferroelectric films, which provides a new perspective for further understanding the photovoltaic effects of ferroelectric films.
      通信作者: 郑海务, zhenghaiw@ustc.edu
    • 基金项目: 国家级-国家自然科学基金(51872074, 61874055)
      Corresponding author: Zheng Hai-Wu, zhenghaiw@ustc.edu
    [1]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [2]

    Li D, Zheng D X, Jin C, Li P, Liu X J, Zheng W C, Bai H L 2018 Adv. Electron. Mater. 4 1800171Google Scholar

    [3]

    Guo R, You L, Zhou Y, Lim Z S, Zou X, Chen L, Ramesh R, Wang J 2013 Nat. Commun. 4 1990Google Scholar

    [4]

    Wu J, Fan Z, Xiao D, Zhu J, Wang J 2016 Prog. Mater. Sci. 84 335Google Scholar

    [5]

    朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 物理学报 68 217701Google Scholar

    Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar

    [6]

    Wu J 2018 Advances in Lead-Free Piezoelectric Materials (New York: Springer) pp301–378

    [7]

    Wang L, Jin K J, Ge C, Wang C, Guo H Z, Lu H B, Yang G Z 2013 Appl. Phys. Lett. 102 252907Google Scholar

    [8]

    Kamala Bharathi K, Lee W M, Ho Sung J, Soo Lim J, Jin Kim S, Chu K, Won Park J, Hyun Song J, Jo M H, Yang C H 2013 Appl. Phys. Lett. 102 012908Google Scholar

    [9]

    Bai Y, Wang Z J, He B, Cui J Z, Zhang Z D 2017 ACS Omega 2 9067Google Scholar

    [10]

    Zhang W, Yang M M, Liang X, Zheng H W, Wang Y, Gao W X, Yuan G L, Zhang W F, Li X G, Luo H S, Zheng R K 2015 Nano Energy 18 315Google Scholar

    [11]

    Zhang Y, Zheng H, Wang X, Li H, Wu Y, Zhang Y, Su H, Yuan G 2020 Ceram. Int. 46 10083Google Scholar

    [12]

    Swain A B, Rath M, Pal S, Ramachandra Rao M S, Subramanian V, Murugavel P 2018 Appl. Phys. Lett. 113 233902Google Scholar

    [13]

    Xie Z, Yang Y, Fang L, Wang Y, Ding X, Yuan G, Liu J M 2019 App. Phys. Lett. 115 112902Google Scholar

    [14]

    Wang Y, Nan C W 2006 Appl. Phys. Lett. 89 052903Google Scholar

    [15]

    Wang H L, Ning X K, Wang Z J 2015 RSC Adv. 5 76783Google Scholar

    [16]

    Wang Z, Hu T, Tang L, Ma N, Song C, Han G, Weng W, Du P 2008 Appl. Phys. Lett. 93 222901Google Scholar

    [17]

    Li Y Z, Wang Z J, Bai Y, Liu W, Zhang Z D 2019 J. Am. Ceram. Soc. 102 5253Google Scholar

    [18]

    Zhang P, Wang T, Gong J 2015 Adv. Mater. 27 5328Google Scholar

    [19]

    Maruyama R, Sakamoto W, Yuitoo I, Takeuchi T, Hayashi K, Yogo T 2016 Jpn. J. Appl. Phys. 55 10TA14Google Scholar

    [20]

    Almusallam A, Luo Z, Komolafe A, Yang K, Robinson A, Torah R, Beeby S 2017 Nano Energy 33 146Google Scholar

    [21]

    Yang X, Su X, Shen M, Zheng F, Xin Y, Zhang L, Hua M, Chen Y, Harris V G 2012 Adv. Mater. 24 1202Google Scholar

    [22]

    Li F Z, Zheng H W, Zhu M S, Zhang X A, Yuan G L, Xie Z S, Li X H, Yue G T, Zhang W F 2017 J. Mater. Chem. C 5 10615Google Scholar

    [23]

    Eerenstein W, Morrison F D, Dho J, Blamire M G, Scott J F, Mathur N D 2005 Science 307 1203aGoogle Scholar

    [24]

    Fang L, Liu J, Ju S, Zheng F, Dong W, Shen M 2010 Appl. Phys. Lett. 97 242501Google Scholar

    [25]

    Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P 2004 Phys. Rev. B 70 024107Google Scholar

    [26]

    Tsutsumi N, Kosugi R, Kinashi K, Sakai W 2016 ACS Appl. Mater. Interfaces 8 16816Google Scholar

    [27]

    Paik H, Choi Y Y, Hong S, No K 2015 Sci. Rep. 5 13209Google Scholar

    [28]

    Cheng C W, Tseng Y C, Wu T B, Chou L J 2004 J. Mater. Res. 19 1043Google Scholar

    [29]

    Kim Y, Cho Y, Hong S, Bühlmann S, Park H, Min D K, Kim S H, No K 2006 Appl. Phys. Lett. 89 172909Google Scholar

    [30]

    Sun W, Zhou Z, Luo J, Wang K, Li J F 2017 J. Appl. Phys. 121 064101Google Scholar

    [31]

    He B, Wang Z 2016 ACS Appl. Mater. Interfaces 8 6736Google Scholar

    [32]

    Yang T, Wei J, Guo Y, Lv Z, Xu Z, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 23372Google Scholar

  • 图 1  Au-BFO纳米复合薄膜的 (a) 示意图和(b) XRD图谱

    Fig. 1.  (a) Schematic diagram and (b) XRD patterns of the Au-BFO nanocomposite films.

    图 2  Au含量为0.5 mol%的Au-BFO纳米复合薄膜中 (a) Au 4f, (b) Bi 4f, (c) Fe 2p和(d) O 1s的XPS芯能级谱

    Fig. 2.  XPS core level spectra of (a) Au 4f, (b) Bi 4f, (c) Fe 2p, (d) O 1s for the Au-BFO nanocomposite films with 0.5 mol% Au.

    图 3  Au-BFO纳米复合薄膜表面的SEM图像, 其中Au含量为 (a) 0, (b) 0.25 mol%, (c) 0.5 mol%, (d) 1 mol%, (e) 3 mol%; (f) 晶粒尺寸随Au含量的变化

    Fig. 3.  Surface SEM images of the Au-BFO nanocomposite films with (a) 0, (b) 0.25 mol%, (c) 0.5 mol%, (d) 1 mol%, (e) 3 mol% Au; (f) the variation of grain size with Au content.

    图 4  Au-BFO纳米复合薄膜的(a) UV-vis吸收光谱和(b) (αhν)2的关系曲线(Au含量为0, 0.25 mol%, 0.5 mol%, 1 mol%和3 mol%)

    Fig. 4.  (a) UV-vis absorption spectra and (b) plot of (αhν)2 as a function of for the Au-BFO nanocomposite films with 0, 0.25 mol%, 0.5 mol%, 1 mol%, and 3 mol% Au.

    图 5  Au-BFO纳米复合薄膜的面外PFM相位图像, 其中Au含量为 (a) 0 mol%, (b) 0.25 mol%, (c) 0.5 mol%, (d) 1 mol%, (e) 3 mol%; (f) 向上的自极化Pup所占比例随Au含量的变化

    Fig. 5.  Out-of-plane PFM phase images of the Au-BFO nanocomposite films with (a) 0 mol%, (b) 0.25 mol%, (c) 0.5 mol%, (d) 1 mol%, (e) 3 mol%; (f) the variation of the ratio of Pup with Au content.

    图 6  Au-BFO纳米复合薄膜在 (a) 暗态下的电流密度-电压(J-V)曲线; (b) 正电压段和(c) 负向电压段的lnJ-V1/2和lnJ-lnV曲线分别符合肖特基发射和空间电荷限制电流机制

    Fig. 6.  Current density vs. voltage (J-V) characteristics of the Au-BFO nanocomposite films (a) in dark; lnJ vs. V1/2 curves fitted using the Schottky emission and lnJ vs. lnV curves fitted using space-charge limited current for the (b) positive and (c) negative branches.

    图 7  Au-BFO纳米复合薄膜的 (a) 光电流密度-电压(J-V)曲线(Au含量为0, 0.25 mol%, 0.5 mol%, 1 mol%和3 mol%)和(b) 开路电压和短路电流密度随Au含量的变化

    Fig. 7.  (a) Photovoltaic (J-V) curves of the Au-BFO nanocomposite films with 0, 0.25 mol%, 0.5 mol%, 1 mol%, and 3 mol% Au, and (b) variation of open-circuit voltages and short-circuit photocurrent densities with Au content.

    图 8  Au-BFO纳米复合薄膜(Au含量为0, 0.25 mol%, 0.5 mol%, 1 mol%和3 mol%)的光电流密度-时间(J-T)曲线

    Fig. 8.  Time-dependence of photocurrent density (J-T) curves of the Au-BFO nanocomposite films with 0, 0.25 mol%, 0.5 mol%, 1 mol%, and 3 mol% Au under the short-circuit condition.

  • [1]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [2]

    Li D, Zheng D X, Jin C, Li P, Liu X J, Zheng W C, Bai H L 2018 Adv. Electron. Mater. 4 1800171Google Scholar

    [3]

    Guo R, You L, Zhou Y, Lim Z S, Zou X, Chen L, Ramesh R, Wang J 2013 Nat. Commun. 4 1990Google Scholar

    [4]

    Wu J, Fan Z, Xiao D, Zhu J, Wang J 2016 Prog. Mater. Sci. 84 335Google Scholar

    [5]

    朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 物理学报 68 217701Google Scholar

    Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar

    [6]

    Wu J 2018 Advances in Lead-Free Piezoelectric Materials (New York: Springer) pp301–378

    [7]

    Wang L, Jin K J, Ge C, Wang C, Guo H Z, Lu H B, Yang G Z 2013 Appl. Phys. Lett. 102 252907Google Scholar

    [8]

    Kamala Bharathi K, Lee W M, Ho Sung J, Soo Lim J, Jin Kim S, Chu K, Won Park J, Hyun Song J, Jo M H, Yang C H 2013 Appl. Phys. Lett. 102 012908Google Scholar

    [9]

    Bai Y, Wang Z J, He B, Cui J Z, Zhang Z D 2017 ACS Omega 2 9067Google Scholar

    [10]

    Zhang W, Yang M M, Liang X, Zheng H W, Wang Y, Gao W X, Yuan G L, Zhang W F, Li X G, Luo H S, Zheng R K 2015 Nano Energy 18 315Google Scholar

    [11]

    Zhang Y, Zheng H, Wang X, Li H, Wu Y, Zhang Y, Su H, Yuan G 2020 Ceram. Int. 46 10083Google Scholar

    [12]

    Swain A B, Rath M, Pal S, Ramachandra Rao M S, Subramanian V, Murugavel P 2018 Appl. Phys. Lett. 113 233902Google Scholar

    [13]

    Xie Z, Yang Y, Fang L, Wang Y, Ding X, Yuan G, Liu J M 2019 App. Phys. Lett. 115 112902Google Scholar

    [14]

    Wang Y, Nan C W 2006 Appl. Phys. Lett. 89 052903Google Scholar

    [15]

    Wang H L, Ning X K, Wang Z J 2015 RSC Adv. 5 76783Google Scholar

    [16]

    Wang Z, Hu T, Tang L, Ma N, Song C, Han G, Weng W, Du P 2008 Appl. Phys. Lett. 93 222901Google Scholar

    [17]

    Li Y Z, Wang Z J, Bai Y, Liu W, Zhang Z D 2019 J. Am. Ceram. Soc. 102 5253Google Scholar

    [18]

    Zhang P, Wang T, Gong J 2015 Adv. Mater. 27 5328Google Scholar

    [19]

    Maruyama R, Sakamoto W, Yuitoo I, Takeuchi T, Hayashi K, Yogo T 2016 Jpn. J. Appl. Phys. 55 10TA14Google Scholar

    [20]

    Almusallam A, Luo Z, Komolafe A, Yang K, Robinson A, Torah R, Beeby S 2017 Nano Energy 33 146Google Scholar

    [21]

    Yang X, Su X, Shen M, Zheng F, Xin Y, Zhang L, Hua M, Chen Y, Harris V G 2012 Adv. Mater. 24 1202Google Scholar

    [22]

    Li F Z, Zheng H W, Zhu M S, Zhang X A, Yuan G L, Xie Z S, Li X H, Yue G T, Zhang W F 2017 J. Mater. Chem. C 5 10615Google Scholar

    [23]

    Eerenstein W, Morrison F D, Dho J, Blamire M G, Scott J F, Mathur N D 2005 Science 307 1203aGoogle Scholar

    [24]

    Fang L, Liu J, Ju S, Zheng F, Dong W, Shen M 2010 Appl. Phys. Lett. 97 242501Google Scholar

    [25]

    Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P 2004 Phys. Rev. B 70 024107Google Scholar

    [26]

    Tsutsumi N, Kosugi R, Kinashi K, Sakai W 2016 ACS Appl. Mater. Interfaces 8 16816Google Scholar

    [27]

    Paik H, Choi Y Y, Hong S, No K 2015 Sci. Rep. 5 13209Google Scholar

    [28]

    Cheng C W, Tseng Y C, Wu T B, Chou L J 2004 J. Mater. Res. 19 1043Google Scholar

    [29]

    Kim Y, Cho Y, Hong S, Bühlmann S, Park H, Min D K, Kim S H, No K 2006 Appl. Phys. Lett. 89 172909Google Scholar

    [30]

    Sun W, Zhou Z, Luo J, Wang K, Li J F 2017 J. Appl. Phys. 121 064101Google Scholar

    [31]

    He B, Wang Z 2016 ACS Appl. Mater. Interfaces 8 6736Google Scholar

    [32]

    Yang T, Wei J, Guo Y, Lv Z, Xu Z, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 23372Google Scholar

  • [1] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究. 物理学报, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [2] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [3] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [4] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [5] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能. 物理学报, 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [6] 张翱, 张春秀, 陈云琳, 张春梅, 孟涛. 反式卤素钙钛矿太阳能电池光伏性能的理论研究. 物理学报, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [7] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [8] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [9] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [10] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [11] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究. 物理学报, 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [12] 张振江, 胡小会, 孙立涛. 单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变. 物理学报, 2013, 62(17): 177101. doi: 10.7498/aps.62.177101
    [13] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [14] 张滨, 杨银堂, 李跃进, 徐小波. SOI SiGe HBT电学性能研究. 物理学报, 2012, 61(23): 238502. doi: 10.7498/aps.61.238502
    [15] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [16] 王洪超, 王春雷, 苏文斌, 刘剑, 孙毅, 彭华, 张家良, 赵明磊, 李吉超, 尹娜, 梅良模. 双掺杂锰酸钙基热电陶瓷的制备及电学性能研究. 物理学报, 2011, 60(8): 087203. doi: 10.7498/aps.60.087203
    [17] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究. 物理学报, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [18] 胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应. 物理学报, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [19] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [20] 王林军, 刘健敏, 苏青峰, 史伟民, 夏义本. 金刚石膜α粒子探测器的电学性能研究. 物理学报, 2006, 55(5): 2518-2522. doi: 10.7498/aps.55.2518
计量
  • 文章访问数:  6807
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-03-21
  • 刊出日期:  2020-06-20

/

返回文章
返回