搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响

朱立峰 潘文远 谢燕 张波萍 尹阳 赵高磊

引用本文:
Citation:

缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响

朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊

Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials

Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei
PDF
HTML
导出引用
  • BiFeO3-BaTiO3铁电材料具有优异的压电和铁电性能, 近年来受到广泛的关注. 该材料既保持了BiFeO3体系高的自发极化强度 Ps的优点, 也克服了BiFeO3体系难以合成纯钙钛矿相等缺点, 被认为是非 常有前景的铁电、压电以及光伏材料. 本文采取传统固相法制备了Bi(Fe0.96Mg0.02–xTi0.02+x)O3-0.3BaTiO3铁电陶瓷, 并揭示了Mg2+/Ti4+比例的变化对该陶瓷样品的铁电和压电以及光电性能的影响. 由于Ti4+取代Mg2+产生电子, 导致陶瓷样品的导电性能增加, 压电和铁电性能出现恶化, 其压电系数d33x = 0的 195 pC/N 下降至x = 0.02时的27 pC/N. 与之相反的是, Ti4+取代Mg2+扩宽了陶瓷样品的光吸收范围, 使陶瓷样品的禁带宽度由x = 0的1.954 eV下降至x = 0.02时的1.800 eV. 由于偶极子翻转构建的内偏电场和禁带宽度的降低等方面的相互作用, 陶瓷样品的光电流密度Jx = 0时的3.71 nA/cm2增加至x = 0.02时的32.45 nA/cm2.
    Ferroelectrics materials, as a candidate of materials, have recently received attention, for they possess applications in photovoltaic devices and can couple the light absorption with other functional properties. In these materials, the strong inversion symmetry is broken, which is because the spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the band-gap, thus permitting efficiency beyond the maximum possible value in a conventional p-n junction solar cell. Much effort has been made to study the ferroelectric photovoltaic effect in several families of ferroelectric perovskite oxides, such as Pb(Zr,Ti)O3, LiNbO3, BaTiO3, KNbO3, Na0.5Bi0.5TiO3-BaTiO3, AgNbO3 and BiFeO3. However, their photo-electric conversion efficiency is now still very low though this field is being studied. The observed output photocurrent is very low due to the negative influence of a wide band-gap and small absorption coefficient, which is caused by the wide band-gaps for most of ferroelectric materials such as Pb(Zr,Ti)O3 (~3.5 eV), and BaTiO3 (~3.3 eV), especially. Although the BiFeO3 system with low band-gap (2.7 eV), which can absorb most visible light for electron transition, is considered as a potential photovoltaic material, it is difficult to synthesize pure perovskite structure. The BiFeO3-BaTiO3 (BF-BT) ferroelectric material with excellent piezoelectric and ferroelectric properties has been widely concerned by researchers in recent years. However, it is still unclear whether this system has the same advantages as BiFeO3 materials with excellent photovoltaic properties. In this work, the Bi(Fe0.96Mg0.02–xTi0.02+x)O3-0.3BaTiO3 ferroelectric ceramics are prepared by the conventional synthesis method to uncover the piezoelectric and ferroelectric properties, as well as the photovoltaic performance with different ratios of Mg2+/Ti4. Because of the electronic production caused by replacing Mg2+ ions with Ti4+ ions, the conductivity of sample increases, and thus its piezoelectric and ferroelectric properties deteriorate. The piezoelectric coefficient d33 decreases from 195 pC/N at x = 0 to 27 pC/N at x = 0.02. Conversely, the range of absorption spectrum increases when the Mg2+ ions are replaced by Ti4+ ions. The band gap of sample decreases from 1.954 eV at x = 0 to 1.800 eV at x = 0.02. The photocurrent of sample increases from 3.71 nA/cm2 at x = 0 to 32.45 nA/cm2 at x = 0.02 because of the combined action of reducing the band gap and internal bias field.
      通信作者: 张波萍, bpzhang@ustb.edu.cn ; 赵高磊, zhaogaolei@mail.ioa.ac.cn
    • 基金项目: 中央高校基本科研业务费(批准号: FRF-TP-18-005A2)资助的课题
      Corresponding author: Zhang Bo-Ping, bpzhang@ustb.edu.cn ; Zhao Gao-Lei, zhaogaolei@mail.ioa.ac.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-18-005A2)
    [1]

    Lines M E, Glass A M 1971 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press) pp110−677

    [2]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric Ceramics (New York: Academic Press) pp136−337

    [3]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar

    [4]

    Katiyar R K, Sharma Y, Barrionuevo D, Kooriyattil S, Pavunny S P, Young J S, Morell G, Weiner B R, Katiyar R S, Scott J F 2015 Appl. Phys. Lett. 106 082903Google Scholar

    [5]

    Agarwal R, Sharma Y, Katiyar R S 2015 Appl. Phys. Lett. 107 162904Google Scholar

    [6]

    Zang Y Y, Xie D, Wu X, Chen Y, Lin Y X, Li M H, He T, Li X, Li Z, Zhu H W, Ren T L, Plant D 2011 Appl. Phys. Lett. 99 132904Google Scholar

    [7]

    Wu J, Fan Z, Xiao D, Zhu J, Wang J 2016 Prog. Mater. Sci. 84 335Google Scholar

    [8]

    Chen B, Li M, Liu Y W, Zuo Z H, Zhuge F, Zhan Q F, Li R W 2011 Nanotechnology 22 195201Google Scholar

    [9]

    Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R, Li R W 2017 Chin. Phys. B 26 067702Google Scholar

    [10]

    Lee M H, Kim D J, Park J S, Kim S W, Song T K, Kim M H, Kim W J, Do D, Jeong I K 2015 Adv. Mater. 27 6976Google Scholar

    [11]

    Zhu L F, Zhang B P, Li S, Zhao G L 2017 J. Alloy. Compd. 727 382Google Scholar

    [12]

    Zheng T, Ding Y, Wu J 2016 RSC Adv. 6 90831Google Scholar

    [13]

    Zhu L F, Zhang B P, Zhang Z C, Li S, Wang L J, Zheng L J 2018 J. Mater. Sci.-Mater. El. 29 2307Google Scholar

    [14]

    Lin Y, Zhang L, Zheng W, Yu J 2015 J. Mater. Sci.-Mater. El. 26 7351Google Scholar

    [15]

    Zhu L F, Zhang B P, Duan J Q, Xun B W, Wang N, Tang Y C, Zhao G L 2018 J. Eur. Ceram. Soc. 38 3463Google Scholar

    [16]

    Wei J, Fu D, Cheng J, Cheng J 2017 J. Mater. Sci. 52 10726Google Scholar

    [17]

    Zhu LF, Liu Q, Zhang B P, Cen Z Y, Wang K, Li J, Bai Y, Wang X H, Li J F 2018 RSC Adv. 8 35794Google Scholar

    [18]

    Liu N, Liang R, Zhou Z, Dong X 2018 J. Mater. Chem. C 6 10211Google Scholar

    [19]

    Wang D, Fan Z, Li W, Zhou D, Feteira A, Wang G, Murakami S, Sun S, Zhao Q, Tan X, Reaney I M 2018 ACS Appl. Energy Mater. 1 4403Google Scholar

    [20]

    Li Q, Wei J X, Cheng J R, Chen J G 2017 J. Mater. Sci. 52 229Google Scholar

    [21]

    Yang H B, Zhou C R, Liu X Y, Zhou Q, Chen G H, Li W Z, Wang H 2013 J. Eur. Ceram. Soc. 33 1177Google Scholar

    [22]

    Pavana S V, Mocherla, Karthik C, Ubic R, Ramachandra R M S, Sudakar C 2013 Appl. Phys. Lett. 103 022910Google Scholar

    [23]

    Liu H, Chen J, Ren Y, Zhang L X, Pan Z, Fan L L, Xing X R 2015 Adv. Electron. Mater. 1 1400051Google Scholar

    [24]

    Xiao H, Dong W, Guo Y, Wang Y, Zhong H, Li Q, Yang M M 2019 Adv. Mater. 31 1805802

  • 图 1  BFM0.02–xT0.02+x-BT (0 ≤ x ≤ 0.02)基陶瓷的XRD图谱 (a) 20°—70°; (b) 38°—40°, 43.5°—46.5°

    Fig. 1.  X-ray diffraction patterns of BFM0.02–xT0.02+x-BT ceramics with different x content (0 ≤ x ≤ 0.02) in a selected 2θ range of 20°—70° (a), 38°—40° and 43.5°—46.5° (b).

    图 2  BFM0.02–xT0.02+x-BT陶瓷样品的SEM形貌图

    Fig. 2.  SEM images of the fracture surface for BFM0.02–xT0.02+x-BT ceramics with different x content (0 ≤ x ≤ 0.02).

    图 3  BFM0.02–xT0.02+x-BT陶瓷样品的(a)电滞回线, (b)剩余极化Pr和矫顽场EC随含量x的变化, (c)漏电流I-E曲线, 以及(d)压电性能d33kp随含量x的变化

    Fig. 3.  Ferroelectric hysteresis loops (a), the variation of polarization (Pr) and electric field (EC) (b), leakage current density (I)-electric field (E) (c), as well as the piezoelectric coefficient d33, planar mode eletromechanical coupling coefficient kp (d) as a function of x for BFM0.02–xT0.02+x-BT (0 ≤ x ≤ 0.02).

    图 4  BFM0.02–xT0.02+x-BT铁电陶瓷的光吸收谱图

    Fig. 4.  UV-vis-NIR absorption spectra of the BFM0.02–xT0.02+x-BT ceramics with different x content (0 ≤ x ≤ 0.02).

    图 5  BFM0.02–xT0.02+x-BT铁电陶瓷的(αhν)1/2-()曲线 (a) x = 0; (b) x = 0.005; (c) x = 0.01; (d) x = 0.02

    Fig. 5.  Plots of (αhν)1/2 versus for the BFM0.02–xT0.02+x-BT ceramics with different x content: (a) x = 0; (b) x = 0.005; (c) x = 0.01; (d) x = 0.02.

    图 6  BFMT-BT铁电陶瓷的光电流密度-时间(J-t)曲线图, 其中(I)区为未极化; (II)区为1 kV下极化; (III)区为2 kV下极化; (IV)区为3 kV下极化

    Fig. 6.  J-t characteristics of BFMT-BT ceramics, which are polarized at different voltage: (I) V = 0 kV; (II) V = 1 kV; (III) V = 2 kV; (IV) V = 3 kV.

    图 7  BFM0.02–xT0.02+x-BT铁电陶瓷的光电流密度-电压(J-V)曲线图 (a) x = 0; (b) x = 0.005; (c) x = 0.01; (d) x = 0.02

    Fig. 7.  J-V characteristics of BFM0.02–xT0.02+x-BT ceramics with different x content: (a) x = 0; (b) x = 0.005; (c) x = 0.01; (d) x = 0.02

    图 8  BFM0.02–xT0.02+x-BT铁电陶瓷光伏效应原理图 (a)未极化、无光条件; (b)未极化、有光条件; (c)极化、无光条件; (d)极化、光照条件

    Fig. 8.  Schematic diagram of photovoltaic effect for BFM0.02–xT0.02+x-BT ceramics, non-polarization and dark condition (a), non-polarization and light condition (b), polarization and dark condition (c), as well as polarization and light condition (d), respectively.

  • [1]

    Lines M E, Glass A M 1971 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press) pp110−677

    [2]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric Ceramics (New York: Academic Press) pp136−337

    [3]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar

    [4]

    Katiyar R K, Sharma Y, Barrionuevo D, Kooriyattil S, Pavunny S P, Young J S, Morell G, Weiner B R, Katiyar R S, Scott J F 2015 Appl. Phys. Lett. 106 082903Google Scholar

    [5]

    Agarwal R, Sharma Y, Katiyar R S 2015 Appl. Phys. Lett. 107 162904Google Scholar

    [6]

    Zang Y Y, Xie D, Wu X, Chen Y, Lin Y X, Li M H, He T, Li X, Li Z, Zhu H W, Ren T L, Plant D 2011 Appl. Phys. Lett. 99 132904Google Scholar

    [7]

    Wu J, Fan Z, Xiao D, Zhu J, Wang J 2016 Prog. Mater. Sci. 84 335Google Scholar

    [8]

    Chen B, Li M, Liu Y W, Zuo Z H, Zhuge F, Zhan Q F, Li R W 2011 Nanotechnology 22 195201Google Scholar

    [9]

    Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R, Li R W 2017 Chin. Phys. B 26 067702Google Scholar

    [10]

    Lee M H, Kim D J, Park J S, Kim S W, Song T K, Kim M H, Kim W J, Do D, Jeong I K 2015 Adv. Mater. 27 6976Google Scholar

    [11]

    Zhu L F, Zhang B P, Li S, Zhao G L 2017 J. Alloy. Compd. 727 382Google Scholar

    [12]

    Zheng T, Ding Y, Wu J 2016 RSC Adv. 6 90831Google Scholar

    [13]

    Zhu L F, Zhang B P, Zhang Z C, Li S, Wang L J, Zheng L J 2018 J. Mater. Sci.-Mater. El. 29 2307Google Scholar

    [14]

    Lin Y, Zhang L, Zheng W, Yu J 2015 J. Mater. Sci.-Mater. El. 26 7351Google Scholar

    [15]

    Zhu L F, Zhang B P, Duan J Q, Xun B W, Wang N, Tang Y C, Zhao G L 2018 J. Eur. Ceram. Soc. 38 3463Google Scholar

    [16]

    Wei J, Fu D, Cheng J, Cheng J 2017 J. Mater. Sci. 52 10726Google Scholar

    [17]

    Zhu LF, Liu Q, Zhang B P, Cen Z Y, Wang K, Li J, Bai Y, Wang X H, Li J F 2018 RSC Adv. 8 35794Google Scholar

    [18]

    Liu N, Liang R, Zhou Z, Dong X 2018 J. Mater. Chem. C 6 10211Google Scholar

    [19]

    Wang D, Fan Z, Li W, Zhou D, Feteira A, Wang G, Murakami S, Sun S, Zhao Q, Tan X, Reaney I M 2018 ACS Appl. Energy Mater. 1 4403Google Scholar

    [20]

    Li Q, Wei J X, Cheng J R, Chen J G 2017 J. Mater. Sci. 52 229Google Scholar

    [21]

    Yang H B, Zhou C R, Liu X Y, Zhou Q, Chen G H, Li W Z, Wang H 2013 J. Eur. Ceram. Soc. 33 1177Google Scholar

    [22]

    Pavana S V, Mocherla, Karthik C, Ubic R, Ramachandra R M S, Sudakar C 2013 Appl. Phys. Lett. 103 022910Google Scholar

    [23]

    Liu H, Chen J, Ren Y, Zhang L X, Pan Z, Fan L L, Xing X R 2015 Adv. Electron. Mater. 1 1400051Google Scholar

    [24]

    Xiao H, Dong W, Guo Y, Wang Y, Zhong H, Li Q, Yang M M 2019 Adv. Mater. 31 1805802

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究. 物理学报, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [3] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展. 物理学报, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [4] 林翠, 白刚, 李卫, 高存法. 外延PbZr0.2Ti0.8O3薄膜负电容的应变调控. 物理学报, 2021, 70(18): 187701. doi: 10.7498/aps.70.20210810
    [5] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展. 物理学报, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [6] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析. 物理学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [7] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [8] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [9] 郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林. 红外探测用无铅铁电陶瓷的热释电特性研究进展. 物理学报, 2020, 69(12): 127708. doi: 10.7498/aps.69.20200303
    [10] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应. 物理学报, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [11] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [12] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能. 物理学报, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [13] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [14] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [15] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [16] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [17] 王磊, 杨成韬, 解群眺, 叶井红. 双层纳米磁电薄膜模型及分析. 物理学报, 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [18] 宇 霄, 罗晓光, 陈贵锋, 沈 俊, 李养贤. 第一性原理计算XHfO3(X=Ba, Sr)的结构、弹性和电子特性. 物理学报, 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
    [19] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程. 物理学报, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [20] 段 苹, 谈国太, 戴守愚, 陈正豪, 周岳亮, 吕惠宾. 钙钛矿结构La0.9Sb0.1MnO3的庞磁电阻性质. 物理学报, 2003, 52(8): 2061-2065. doi: 10.7498/aps.52.2061
计量
  • 文章访问数:  9431
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-08-29
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回