搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几种范德瓦耳斯铁电材料中新奇物性的研究进展

金鑫 陶蕾 张余洋 潘金波 杜世萱

引用本文:
Citation:

几种范德瓦耳斯铁电材料中新奇物性的研究进展

金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱

Research progress of novel properties in several van der Waals ferroelectric materials

Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan
PDF
HTML
导出引用
  • 铁电材料因具有电场可调的自发极化, 在各类功能器件中有着广泛的应用. 受器件小型化发展趋势的影响, 二维范德瓦耳斯铁电材料及其层状母体块材成为了铁电领域的重点研究对象之一. 近年来, 研究人员已经制备出了数种二维范德瓦耳斯铁电材料, 并通过理论计算与实验结合的方法发现这些材料及其母体块材具有许多优良的、新奇的物理性质. 本文主要介绍近年来几种范德瓦耳斯铁电材料的一些研究进展, 包括体相范德瓦耳斯材料CuInP2S6的新奇物性的理论预测与实验证实, 以及两类二维范德瓦耳斯铁电材料M2X2Y6 (M = 金属, X = Si, Ge, Sn, Y = S, Se, Te), QL-M2O3 (M = Al, Y)及相关功能器件的理论设计, 最后对范德瓦耳斯铁电材料蕴含的丰富物理内涵及其发展前景进行了简要探讨, 希望能够为该领域的相关研究提供一些思路和参考.
    Ferroelectric (FE) materials possess electrically switchable spontaneous polarizations, showing broad applications in various functional devices. For the miniaturization of electronic devices, two-dimensional (2D) van der Waals (vdW) ferroelectric materials and the corresponding bulk counterparts have aroused more interest of researchers. Recently, several kinds of 2D vdW ferroelectrics have been fabricated in experiment. These 2D vdW FEs, as well as their bulk counterparts, exhibit novel properties as demonstrated in experiment or predicted in theory. This paper is to review the recent progress of novel properties of several vdW ferroelectrics. In Section II, we introduce the unusual ferroelectric property—a uniaxial quadruple potential well for Cu displacements—enabled by the van der Waals gap in copper indium thiophosphate (CuInP2S6). The electric field drives the Cu atoms to unidirectionally cross the vdW gaps, which is distinctively different from dipole reorientation, resulting in an unusual phenomenon that the polarization of CuInP2S6 aligns against the direction of the applied electric field. The potential energy landscape for Cu displacements is strongly influenced by strain, accounting for the origin of the negative piezoelectric coefficient and making CuInP2S6 a rare example of a uniaxial multi-well ferroelectric. In Section III, we introduce the distinct geometric evolution mechanism of the newly reported M2Ge2Y6 (M = metal, X = Si, Ge, Sn, Y = S, Sn, Te) monolayers and a high throughput screening of 2D ferroelectric candidates based on this mechanism. The ferroelectricity of M2Ge2Y6 originates from the vertical displacement of Ge-dimer in the same direction driven by a soft phonon mode of the centrosymmetric configuration. Another centrosymmetric configuration is also dynamically stable but higher in energy than the ferroelectric phase. The metastable centrosymmetric phase of M2Ge2Y6 monolayers allows a new two-step ferroelectric switching path and may induce novel domain behaviors. In Section IV, a new concept about constructing 2D ferroelectric QL-M2O3/graphene heterostructure to realize monolayer-based FE tunnel junctions or potentially graphene p-n junctions is reviewed. These findings provide new perspectives of the integration of graphene with monolayer FEs, as well as related functional devices. Finally, the challenge and prospect of vdW ferroelectrics are discussed, providing some perspective for the field of ferroelectrics.
      通信作者: 潘金波, jbpan@iphy.ac.cn ; 杜世萱, sxdu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61888102)、国家重点研发计划(批准号: 2016YFA0202300, 2018YFA0305800)和中国科学院战略性先导科技专项(批准号: XDB30000000)资助的课题.
      Corresponding author: Pan Jin-Bo, jbpan@iphy.ac.cn ; Du Shi-Xuan, sxdu@iphy.ac.cn
    • Funds: Project supported by National Nature Science Foundation of China (Grant No. 61888102), the National Key R&D Program of China (Grant Nos. 2016YFA0202300, 2018YFA0305800), and the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDB30000000).
    [1]

    Garcia V, Bibes M 2014 Nat. Commun. 5 4289Google Scholar

    [2]

    Kim J Y, Choi M J, Jang H W 2021 APL Mater. 9 021102Google Scholar

    [3]

    Martin L W, Rappe A M 2016 Nat. Rev. Mater. 2 16087

    [4]

    Paillard C, Bai X, Infante I C, Guennou M, Geneste G, Alexe M, Kreisel J, Dkhil B 2016 Adv. Mater. 28 5153Google Scholar

    [5]

    Cui C, Xue F, Hu W J, Li L J 2018 npj 2D Mater. Appl. 2 18Google Scholar

    [6]

    Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J, Duan C 2020 Adv. Electron. Mater. 6 1900818Google Scholar

    [7]

    Qi L, Ruan S, Zeng Y J 2021 Adv. Mater. 33 2005098Google Scholar

    [8]

    Wu M 2021 ACS Nano 15 9229Google Scholar

    [9]

    Xue F, He J H, Zhang X 2021 Appl. Phys. Rev. 8 021316Google Scholar

    [10]

    Yasuda K, Wang X, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Science 372 1458Google Scholar

    [11]

    Vizner Stern M, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O, Ben Shalom M 2021 Science 372 1462Google Scholar

    [12]

    Li L, Wu M 2017 ACS Nano 11 6382Google Scholar

    [13]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [14]

    Liang Y, Shen S, Huang B, Dai Y, Ma Y 2021 Mater. Horiz. 8 1683Google Scholar

    [15]

    Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal Evgeny Y, Hamilton Alex R, Seidel J 2019 Sci. Adv. 5 eaax5080Google Scholar

    [16]

    Brehm J A, Neumayer S M, Tao L, O'Hara A, Chyasnavichus M, Susner M A, McGuire M A, Kalinin S V, Jesse S, Ganesh P, Pantelides S T, Maksymovych P, Balke N 2020 Nat. Mater. 19 43Google Scholar

    [17]

    Neumayer S M, Tao L, O'Hara A, Brehm J, Si M, Liao P Y, Feng T, Kalinin S V, Ye P D, Pantelides S T, Maksymovych P, Balke N 2020 Phys. Rev. Appl. 13 064063Google Scholar

    [18]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [19]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [20]

    Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [21]

    Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P, Zhang X 2018 Phys. Rev. Lett. 120 227601Google Scholar

    [22]

    Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M, Hao J 2019 Nat. Commun. 10 1775Google Scholar

    [23]

    Wu J, Chen H Y, Yang N, Cao J, Yan X, Liu F, Sun Q, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [24]

    Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K, Ye P D 2019 Nat. Electron. 2 580Google Scholar

    [25]

    Wang S, Liu L, Gan L, Chen H, Hou X, Ding Y, Ma S, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [26]

    Neumayer S M, Eliseev E A, Susner M A, Tselev A, Rodriguez B J, Brehm J A, Pantelides S T, Panchapakesan G, Jesse S, Kalinin S V, McGuire M A, Morozovska A N, Maksymovych P, Balke N 2019 Phys. Rev. Mater. 3 024401Google Scholar

    [27]

    You L, Zhang Y, Zhou S, Chaturvedi A, Morris Samuel A, Liu F, Chang L, Ichinose D, Funakubo H, Hu W, Wu T, Liu Z, Dong S, Wang J 2019 Sci. Adv. 5 eaav3780Google Scholar

    [28]

    Neumayer S M, Tao L, O'Hara A, Susner M A, McGuire M A, Maksymovych P, Pantelides S T, Balke N 2020 Adv. Energy Mater. 10 2001726Google Scholar

    [29]

    Habbal F, Zvirgzds J A, Scott J F 1978 J. Chem. Phys. 69 4984Google Scholar

    [30]

    Baranov A I, Khiznichenko V P, Shuvalov L A 1989 Ferroelectrics 100 135Google Scholar

    [31]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427Google Scholar

    [32]

    Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X, Yan Q B, Su G 2021 Sci. Bull. 66 233Google Scholar

    [33]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [34]

    Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290Google Scholar

    [35]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [36]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [37]

    Liu C, Wan W, Ma J, Guo W, Yao Y 2018 Nanoscale 10 7984Google Scholar

    [38]

    Shen S, Liu C, Ma Y, Huang B, Dai Y 2019 Nanoscale 11 11864Google Scholar

    [39]

    Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415Google Scholar

    [40]

    Jin X, Tao L, Zhang Y Y, Pan J, Du S 2021 Nano Res.

    [41]

    Yu Z, Xia W, Xu K, Xu M, Wang H, Wang X, Yu N, Zou Z, Zhao J, Wang L, Miao X, Guo Y 2019 J. Phys. Chem. C 123 13885Google Scholar

    [42]

    Ge W, Xu K, Xia W, Yu Z, Wang H, Liu X, Zhao J, Wang X, Yu N, Zou Z, Yan Z, Wang L, Xu M, Guo Y 2020 J. Alloys Compd. 819 153368Google Scholar

    [43]

    Shuang Y, Hatayama S, Tanimura H, Ando D, Ichitsubo T, Sutou Y 2020 Mater. Adv. 1 2426Google Scholar

    [44]

    Hao K R, Ma X Y, Lyu H Y, Zhu Z G, Yan Q B, Su G 2021 Nano Res. 14 4732Google Scholar

    [45]

    Lee H J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U, Lee J H 2020 Science 369 1343Google Scholar

    [46]

    Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E, Hofmann P 2012 Nano Lett. 12 4503Google Scholar

    [47]

    Guo H, Wang X, Huang L, Jin X, Yang Z, Zhou Z, Hu H, Zhang Y Y, Lu H, Zhang Q, Shen C, Lin X, Gu L, Dai Q, Bao L, Du S, Hofer W, Pantelides S T, Gao H J 2020 Nano Lett. 20 8584Google Scholar

    [48]

    Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [49]

    Mao J, Huang L, Pan Y, Gao M, He J, Zhou H, Guo H, Tian Y, Zou Q, Zhang L, Zhang H, Wang Y, Du S, Zhou X, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101Google Scholar

    [50]

    Omiciuolo L, Hernández E R, Miniussi E, Orlando F, Lacovig P, Lizzit S, Menteş T O, Locatelli A, Larciprete R, Bianchi M, Ulstrup S, Hofmann P, Alfè D, Baraldi A 2014 Nat. Commun. 5 5062Google Scholar

    [51]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing Joan M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [52]

    Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [53]

    Lin L, Liao L, Yin J, Peng H, Liu Z 2015 Nano Today 10 701Google Scholar

    [54]

    Wang G, Zhang M, Chen D, Guo Q, Feng X, Niu T, Liu X, Li A, Lai J, Sun D, Liao Z, Wang Y, Chu P K, Ding G, Xie X, Di Z, Wang X 2018 Nat. Commun. 9 5168Google Scholar

    [55]

    Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E, Wang Y 2020 Phys. Rev. Lett. 124 067602Google Scholar

    [56]

    Xu C, Chen P, Tan H, Yang Y, Xiang H, Bellaiche L 2020 Phys. Rev. Lett. 125 037203Google Scholar

    [57]

    Zhang J J, Lin L, Zhang Y, Wu M, Yakobson B I, Dong S 2018 J. Am. Chem. Soc. 140 9768Google Scholar

    [58]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

    [59]

    Li C K, Yao X P, Chen G 2021 Phys. Rev. Res. 3 L012026Google Scholar

    [60]

    Sun W, Wang W, Li H, Zhang G, Chen D, Wang J, Cheng Z 2020 Nat. Commun. 11 5930Google Scholar

    [61]

    Shen X W, Tong W Y, Gong S J, Duan C G 2017 2D Mater. 5 011001Google Scholar

    [62]

    Li C W, Hong J, May A F, Bansal D, Chi S, Hong T, Ehlers G, Delaire O 2015 Nat. Phys. 11 1063Google Scholar

    [63]

    Picozzi S 2014 Front. Phys. 2 10

    [64]

    Chen J, Wu K, Hu W, Yang J 2021 J. Phys. Chem. Lett. 12 12256Google Scholar

    [65]

    Zhang J J, Zhu D, Yakobson B I 2021 Nano Lett. 21 785Google Scholar

    [66]

    Liang Y, Mao N, Dai Y, Kou L, Huang B, Ma Y 2021 npj Comput. Mater. 7 172Google Scholar

    [67]

    Tang X, Shang J, Gu Y, Du A, Kou L 2020 J. Mater. Chem. A 8 7331Google Scholar

    [68]

    Kim H S 2021 J. Mater. Chem. A 9 11553Google Scholar

    [69]

    Ju L, Tan X, Mao X, Gu Y, Smith S, Du A, Chen Z, Chen C, Kou L 2021 Nat. Commun. 12 5128Google Scholar

  • 图 1  (a), (b) 弛豫后的体相CuInP2S6的晶体结构, CuInP2S6分别处于$ + $LP和$ + $HP态, 对应其能量-极化曲线右侧第1个和第2个局域能量极小值; (c), (d) 体相CuInP2S6的能量随极化变化的曲线, (c) CuInP2S6晶格常数c取其平衡晶格常数13.09 Å, (d) CuInP2S6晶格常数c分别取13.62, 13.35, 12.83和12.57 Å[16]

    Fig. 1.  (a), (b) Relaxed atomic configurations of bulk CuInP2S6 in $ + $LP and $ + $HP states, respectively, corresponding to the first and second local energy minimum in energy-polarization curve; (c), (d) energy of bulk CuInP2S6 as a function of its polarization, in which the lattice parameter c is equilibrium lattice constant 13.09 Å (c) and 13.62, 13.35, 12.83 and 12.57 Å (d), respectively[16].

    图 2  (a), (b) CuInP2S6 $ + $HP态、$ + $LP态极化随应力的变化曲线; (c) CuInP2S6的定量压电系数图; (d) 图(c)中CuInP2S6压电系数的直方图统计, 其中4个极大值通过高斯函数进行拟合, 图中虚线为理论计算所得的压电系数[16].

    Fig. 2.  (a), (b) Polarization as a function of stress for $ + $HP and $ + $LP state of CuInP2S6, respectively. (c) Quantified piezoelectric constant map of CuInP2S6. (d) histogram of piezoelectric constant extracted from (c), where the four distinct maxima are fitted by Gaussian function. The dashed lines denote the calculated piezoelectric constant of CuInP2S6[16].

    图 3  (a) 实验上观察到的CuInP2S6的一条铁电翻转路径中, 极化随脉冲持续时间的变化曲线; (b) 图(a)中所示的翻转路径中, Cu原子相对位移随脉冲持续时间的变化曲线; (c) 图(a)所对应的翻转路径示意图; (d) 含有过量Cu原子的CuInP2S6在外电场下, 其中两层的Cu原子的演化轨迹[17]

    Fig. 3.  (a) Polarization as a function of pulse duration time for one of the experimentally observed switching paths of CuInP2S6; (b) Cu relative displacement of as a function of pulse duration time for the switching paths in (a); (c) schematics of the switching path in (a); (d) evolution trajectory of Cu atoms in two individual layers for CuInP2S6 with excess Cu under external electric field[17]

    图 4  目前已知的几类典型的二维铁电材料[18,19,22,34,36-38]. “exp”代表该类材料已在实验上制备, “th”代表该类材料为理论预测结果. 箭头表示铁电极化方向

    Fig. 4.  Several typical known two-dimensional ferroelectric materials[18,19,22,34,36-38]. “exp” and “th” denote that the corresponding materials are experimentally fabricated and theoretically predicted, respectively. Arrows represent the directions of ferroelectric polarizations.

    图 5  (a) 单层M2X2Y6中通过X-dimer位移打破中心对称性的示意图; (b)—(d) 单层M2X2Y6的高通量初筛结果. 对于被标识的金属原子M, 红色圆点表示初筛后所有的M2X2Y6均保持铁电结构, 红色圆圈表示初筛后部分M2X2Y6 (一种或两种)保持铁电结构, 蓝色圆圈表示初筛后M2X2Y6结构为扭曲极化结构[40]

    Fig. 5.  (a) Schematic for the centrosymmetry breaking in M2X2Y6 monolayer through X-dimer displacement; (b)–(d) primary high-throughput screening results for M2X2Y6 monolayers. For the marked metal atom M, red dot represents that the M2X2Y6 monolayers show ferroelectric structure after primary screening, red circle represents that one or two of the M2X2Y6 monolayers show ferroelectric structure after primary screening, blue circle represents that the M2X2Y6 monolayers show distorted polar structure after primary screening[40].

    图 6  (a)—(c) 中心对称-I相、铁电相、中心对称-II相的单层Hf2Ge2Te6的原子结构侧视图; (d)—(f) 中心对称-I相、铁电相、中心对称-II相的单层Hf2Ge2Te6的声子谱; (g)—(i) 图(d)和(e)中标记点处的声子振动模式, 以及铁电相和中心对称-II相结构形成示意图, 图中红色箭头所示为Ge原子的振动方向[40]

    Fig. 6.  (a)–(c) Side views of the atomic configurations of Hf2Ge2Te6 monolayer in centrosymmetric-I, ferroelectric and centrosymmetric-II phases, respectively; (d)–(f) phonon dispersions of Hf2Ge2Te6 monolayer in centrosymmetric-I, ferroelectric and centrosymmetric-II phases, respectively; (g)–(i) schematic of vibration modes at the marked points in panel (d) and (e), and the formation of the ferroelectric and centrosymmetric-II Hf2Ge2Te6 monolayers, where the red arrows represent the vibration direction of Ge atoms[40]

    图 7  (a), (c) 单层铁电Hf2Ge2Y6 (Y = S, Se, Te)两种可能的铁电翻转路径的势垒; (b), (d) 两种可能的铁电翻转路径的示意图; (e)单层铁电Hf2Ge2Y6从均匀极化向上态↑↑↑↑翻转为均匀极化向下态↓↓↓↓过程的翻转势垒, 图中每个势垒对应一个原胞内的极化翻转, 红色和黑色箭头代表每个原胞内的极化方向; (f)基于单层铁电Hf2Ge2Y6的高密度存储器件示意图[40]

    Fig. 7.  (a), (c) Ferroelectric switching barriers of the two possible switching paths of ferroelectric monolayers Hf2Ge2Y6 (Y = S, Se, Te). (b), (d) Schematics of the two possible switching paths. (e) Ferroelectric switching barriers of Hf2Ge2Y6 monolayers from a uniformed polarization up state ↑↑↑↑ to a polarization down state ↓↓↓↓, in which each barrier corresponds to polarization switching in one unit cell. The red and black arrows represent the polarization direction in each unit cell. (f) Schematic of the high-density storage device based on ferroelectric monolayer Hf2Ge2Y6[40].

    图 8  (a)—(c) 弛豫后的石墨烯/QL-In2Se3/Ru、石墨烯/QL-Al2O3/Ru异质结的原子构型, (b), (c)中QL-Al2O3的极化方向分别指向和远离石墨烯; (d)—(f) 图(a)—(c)所示构型的面平均静电势[23]

    Fig. 8.  (a)–(c) Relaxed atomic configurations of graphene/QL-In2Se3/Ru and graphene/QL-M2O3/Ru heterostructure. The polarization of QL-Al2O3 in (b) and (c) points to and away from graphene, respectively. (d)–(f) Plane-averaged electrostatic potential (ESP) of (a)–(c), respectively[23].

    图 9  (a), (b) 石墨烯/QL-Al2O3/Ru异质结原子层分辨的投影电子态密度及对应的能带示意图, (a), (b)异质结中QL-Al2O3极化分别指向和远离石墨烯; (c) 基于石墨烯/QL-M2O3 (M = Al, Y)/Ru异质结的功能器件示意图[23]

    Fig. 9.  (a), (b) Layer-resolved projected density of states and corresponding band diagram of graphene/QL-Al2O3/Ru heterostructure when polarization points to (a) and away from (b) graphene; (c) schematics of functional devices based on graphene/QL-M2O3 (M = Al, Y)/Ru heterostructure[23].

  • [1]

    Garcia V, Bibes M 2014 Nat. Commun. 5 4289Google Scholar

    [2]

    Kim J Y, Choi M J, Jang H W 2021 APL Mater. 9 021102Google Scholar

    [3]

    Martin L W, Rappe A M 2016 Nat. Rev. Mater. 2 16087

    [4]

    Paillard C, Bai X, Infante I C, Guennou M, Geneste G, Alexe M, Kreisel J, Dkhil B 2016 Adv. Mater. 28 5153Google Scholar

    [5]

    Cui C, Xue F, Hu W J, Li L J 2018 npj 2D Mater. Appl. 2 18Google Scholar

    [6]

    Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J, Duan C 2020 Adv. Electron. Mater. 6 1900818Google Scholar

    [7]

    Qi L, Ruan S, Zeng Y J 2021 Adv. Mater. 33 2005098Google Scholar

    [8]

    Wu M 2021 ACS Nano 15 9229Google Scholar

    [9]

    Xue F, He J H, Zhang X 2021 Appl. Phys. Rev. 8 021316Google Scholar

    [10]

    Yasuda K, Wang X, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Science 372 1458Google Scholar

    [11]

    Vizner Stern M, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O, Ben Shalom M 2021 Science 372 1462Google Scholar

    [12]

    Li L, Wu M 2017 ACS Nano 11 6382Google Scholar

    [13]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [14]

    Liang Y, Shen S, Huang B, Dai Y, Ma Y 2021 Mater. Horiz. 8 1683Google Scholar

    [15]

    Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal Evgeny Y, Hamilton Alex R, Seidel J 2019 Sci. Adv. 5 eaax5080Google Scholar

    [16]

    Brehm J A, Neumayer S M, Tao L, O'Hara A, Chyasnavichus M, Susner M A, McGuire M A, Kalinin S V, Jesse S, Ganesh P, Pantelides S T, Maksymovych P, Balke N 2020 Nat. Mater. 19 43Google Scholar

    [17]

    Neumayer S M, Tao L, O'Hara A, Brehm J, Si M, Liao P Y, Feng T, Kalinin S V, Ye P D, Pantelides S T, Maksymovych P, Balke N 2020 Phys. Rev. Appl. 13 064063Google Scholar

    [18]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [19]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [20]

    Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [21]

    Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P, Zhang X 2018 Phys. Rev. Lett. 120 227601Google Scholar

    [22]

    Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M, Hao J 2019 Nat. Commun. 10 1775Google Scholar

    [23]

    Wu J, Chen H Y, Yang N, Cao J, Yan X, Liu F, Sun Q, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [24]

    Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K, Ye P D 2019 Nat. Electron. 2 580Google Scholar

    [25]

    Wang S, Liu L, Gan L, Chen H, Hou X, Ding Y, Ma S, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [26]

    Neumayer S M, Eliseev E A, Susner M A, Tselev A, Rodriguez B J, Brehm J A, Pantelides S T, Panchapakesan G, Jesse S, Kalinin S V, McGuire M A, Morozovska A N, Maksymovych P, Balke N 2019 Phys. Rev. Mater. 3 024401Google Scholar

    [27]

    You L, Zhang Y, Zhou S, Chaturvedi A, Morris Samuel A, Liu F, Chang L, Ichinose D, Funakubo H, Hu W, Wu T, Liu Z, Dong S, Wang J 2019 Sci. Adv. 5 eaav3780Google Scholar

    [28]

    Neumayer S M, Tao L, O'Hara A, Susner M A, McGuire M A, Maksymovych P, Pantelides S T, Balke N 2020 Adv. Energy Mater. 10 2001726Google Scholar

    [29]

    Habbal F, Zvirgzds J A, Scott J F 1978 J. Chem. Phys. 69 4984Google Scholar

    [30]

    Baranov A I, Khiznichenko V P, Shuvalov L A 1989 Ferroelectrics 100 135Google Scholar

    [31]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427Google Scholar

    [32]

    Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X, Yan Q B, Su G 2021 Sci. Bull. 66 233Google Scholar

    [33]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [34]

    Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290Google Scholar

    [35]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [36]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [37]

    Liu C, Wan W, Ma J, Guo W, Yao Y 2018 Nanoscale 10 7984Google Scholar

    [38]

    Shen S, Liu C, Ma Y, Huang B, Dai Y 2019 Nanoscale 11 11864Google Scholar

    [39]

    Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415Google Scholar

    [40]

    Jin X, Tao L, Zhang Y Y, Pan J, Du S 2021 Nano Res.

    [41]

    Yu Z, Xia W, Xu K, Xu M, Wang H, Wang X, Yu N, Zou Z, Zhao J, Wang L, Miao X, Guo Y 2019 J. Phys. Chem. C 123 13885Google Scholar

    [42]

    Ge W, Xu K, Xia W, Yu Z, Wang H, Liu X, Zhao J, Wang X, Yu N, Zou Z, Yan Z, Wang L, Xu M, Guo Y 2020 J. Alloys Compd. 819 153368Google Scholar

    [43]

    Shuang Y, Hatayama S, Tanimura H, Ando D, Ichitsubo T, Sutou Y 2020 Mater. Adv. 1 2426Google Scholar

    [44]

    Hao K R, Ma X Y, Lyu H Y, Zhu Z G, Yan Q B, Su G 2021 Nano Res. 14 4732Google Scholar

    [45]

    Lee H J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U, Lee J H 2020 Science 369 1343Google Scholar

    [46]

    Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E, Hofmann P 2012 Nano Lett. 12 4503Google Scholar

    [47]

    Guo H, Wang X, Huang L, Jin X, Yang Z, Zhou Z, Hu H, Zhang Y Y, Lu H, Zhang Q, Shen C, Lin X, Gu L, Dai Q, Bao L, Du S, Hofer W, Pantelides S T, Gao H J 2020 Nano Lett. 20 8584Google Scholar

    [48]

    Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [49]

    Mao J, Huang L, Pan Y, Gao M, He J, Zhou H, Guo H, Tian Y, Zou Q, Zhang L, Zhang H, Wang Y, Du S, Zhou X, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101Google Scholar

    [50]

    Omiciuolo L, Hernández E R, Miniussi E, Orlando F, Lacovig P, Lizzit S, Menteş T O, Locatelli A, Larciprete R, Bianchi M, Ulstrup S, Hofmann P, Alfè D, Baraldi A 2014 Nat. Commun. 5 5062Google Scholar

    [51]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing Joan M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [52]

    Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [53]

    Lin L, Liao L, Yin J, Peng H, Liu Z 2015 Nano Today 10 701Google Scholar

    [54]

    Wang G, Zhang M, Chen D, Guo Q, Feng X, Niu T, Liu X, Li A, Lai J, Sun D, Liao Z, Wang Y, Chu P K, Ding G, Xie X, Di Z, Wang X 2018 Nat. Commun. 9 5168Google Scholar

    [55]

    Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E, Wang Y 2020 Phys. Rev. Lett. 124 067602Google Scholar

    [56]

    Xu C, Chen P, Tan H, Yang Y, Xiang H, Bellaiche L 2020 Phys. Rev. Lett. 125 037203Google Scholar

    [57]

    Zhang J J, Lin L, Zhang Y, Wu M, Yakobson B I, Dong S 2018 J. Am. Chem. Soc. 140 9768Google Scholar

    [58]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

    [59]

    Li C K, Yao X P, Chen G 2021 Phys. Rev. Res. 3 L012026Google Scholar

    [60]

    Sun W, Wang W, Li H, Zhang G, Chen D, Wang J, Cheng Z 2020 Nat. Commun. 11 5930Google Scholar

    [61]

    Shen X W, Tong W Y, Gong S J, Duan C G 2017 2D Mater. 5 011001Google Scholar

    [62]

    Li C W, Hong J, May A F, Bansal D, Chi S, Hong T, Ehlers G, Delaire O 2015 Nat. Phys. 11 1063Google Scholar

    [63]

    Picozzi S 2014 Front. Phys. 2 10

    [64]

    Chen J, Wu K, Hu W, Yang J 2021 J. Phys. Chem. Lett. 12 12256Google Scholar

    [65]

    Zhang J J, Zhu D, Yakobson B I 2021 Nano Lett. 21 785Google Scholar

    [66]

    Liang Y, Mao N, Dai Y, Kou L, Huang B, Ma Y 2021 npj Comput. Mater. 7 172Google Scholar

    [67]

    Tang X, Shang J, Gu Y, Du A, Kou L 2020 J. Mater. Chem. A 8 7331Google Scholar

    [68]

    Kim H S 2021 J. Mater. Chem. A 9 11553Google Scholar

    [69]

    Ju L, Tan X, Mao X, Gu Y, Smith S, Du A, Chen Z, Chen C, Kou L 2021 Nat. Commun. 12 5128Google Scholar

  • [1] 李环娅, 周柯, 尹万健. 材料的非简谐性描述符. 物理学报, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [6] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [7] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [8] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [9] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [10] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应. 物理学报, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [11] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [12] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能. 物理学报, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [13] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [14] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [15] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [16] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [17] 胡婷, 阚二军. 低维铁电材料研究进展. 物理学报, 2018, 67(15): 157701. doi: 10.7498/aps.67.20180483
    [18] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [19] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [20] 袁振坤, 许鹏, 陈时友. 多元半导体光伏材料中晶格缺陷的计算预测. 物理学报, 2015, 64(18): 186102. doi: 10.7498/aps.64.186102
计量
  • 文章访问数:  7012
  • PDF下载量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-03-24
  • 上网日期:  2022-06-15
  • 刊出日期:  2022-06-20

/

返回文章
返回