搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算

史晓红 侯滨朋 李祗烁 陈京金 师小文 朱梓忠

引用本文:
Citation:

锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算

史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠

Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations

Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong
PDF
HTML
导出引用
  • 采用第一原理方法计算了两种不同镍含量的锂离子电池富锂锰基三元正极材料Li1.2Ni0.32Co0.04Mn0.44O2 (空间群为$ R\bar{3}m $) 和Li1.167Ni0.167Co0.167Mn0.5O2 (空间群为C2/m)中氧空位簇的形成能. 结果表明, 含镍量较少的Li1.167Ni0.167Co0.167Mn0.5O2正极材料中氧空位簇的形成能总是高于含镍量较多的Li1.2Ni0.32Co0.04Mn0.44O2材料中的氧空位簇形成能, 这说明含镍量较高的正极材料中氧空位簇更容易形成. 无论是含镍量较高的富锂锰基材料, 还是含镍量较少的同类材料, 过渡金属边上的氧空位簇的形成能总是大于锂离子附近空位簇的形成能, 说明氧的脱去更趋向于在Li离子附近发生. 较低的温度和较高的氧分压会使氧空位簇的形成能增加, 从而抑制氧空位簇的形成. 此外, 还计算了空位簇边上的过渡金属原子被其它过渡金属原子(Ti 和Mo)替位后的氧空位簇形成能. 结果表明, 除了Li1.2Ni0.32Co0.04Mn0.44O2材料中双氧空位V2O-Li 附近的Ni元素被Ti替位外, 其余情况下过渡金属Ni和Mn分别被Ti或Mo替位后均能够增大VnO-Li空位簇的形成能, 故替位点缺陷的掺杂有抑制氧的损失和提高材料的结构稳定性的作用.
    Using the first-principles method, the formation energy values of O-vacancy clusters of two Li-rich Mn-based ternary cathode materials of lithium ion battery with different amounts of nickel , i.e. Li1.2Ni0.32Co0.04Mn0.44O2 (space group $R\bar{3}m)$ and Li1.167Ni0.167Co0.167Mn0.5O2 (space group C2/m), are calculated. Results show that the formation energy of oxygen vacancy cluster of the material with less nickel content Li1.167Ni0.167Co0.167Mn0.5O2 can be always higher than that of the material Li1.2Ni0.32Co0.04Mn0.44O2 with higher nickel content. This indicates that the oxygen vacancy clusters are more likely to form in cathode material with higher nickel content. The formation energy of the oxygen vacancy cluster near the transition metal is always greater than that near the lithium ion, indicating that the removal of oxygen tends to occur near the Li ion. Lower temperature and higher partial pressure can increase the formation energy of oxygen vacancy cluster, and therefore inhibit the formation of oxygen vacancy cluster. In addition, the formation energy values of oxygen vacancy clusters with the transition metals in the materials replaced by other transition metals (i.e., Ti and Mo) are also calculated. The results show that, in addition to the case of Ni replaced by Ti near the double oxygen vacancies near the Li-ion in Li1.2Ni0.32Co0.04Mn0.44O2, all the remaining cases of the transition metals Ni or Mn replaced by Ti or Mo always increase the formation energy of the O-vacancy cluster. Therefore, the doping should be able to inhibit the loss of oxygen and improve the structural stability of material.
      通信作者: 朱梓忠, zzhu@xmu.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2016YFA0202601)资助的课题.
      Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0202601).
    [1]

    Dunn B, Kamath H, Tarascon J M 2011 Science 334 928Google Scholar

    [2]

    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D 2011 Energy Environ. Sci. 4 3243Google Scholar

    [3]

    Nitta N, Wu F, Lee J T, Yushin G 2015 Mater. Today 18 252Google Scholar

    [4]

    Yuan L X, Wang Z H, Zhang W X, Hu X L, Chen J T, Huang Y H, Goodenough J B 2011 Energy Environ. Sci. 4 269Google Scholar

    [5]

    Liu J L, Hou M Y, Yi J, Guo S S, Wang C X, Xia Y Y 2014 Energy Environ. Sci. 7 705Google Scholar

    [6]

    Csernica P M, Kalirai S S, Gent W E, Lim K, Yu Y S, Liu Y, Ahn S J, Kaeli E, Xu X, Stone K H, Marshall A F, Sinclair R, Shapiro  D A, Toney M F, Chueh W C 2021 Nat. Energy 6 642Google Scholar

    [7]

    Hu E Y, Yu X Q, Lin R Q, Bi X X, Lu J, Bak S M, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K, Yang X Q 2018 Nat. Energy 3 690Google Scholar

    [8]

    Zhu Z, Yu D W, Yang Y, Su C, Huang Y M, Dong Y H, Waluyo I, Wang B M, Hunt A, Yao X H, Lee J, Xue W J, Li J 2019 Nat. Energy 4 1049Google Scholar

    [9]

    Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine  K, Zhang J G, Liu L M, Wang C 2019 Nat. Nanotechnol. 14 602Google Scholar

    [10]

    Lee E, Persson K A 2014 Adv. Energy Mater. 4 1400498Google Scholar

    [11]

    Hoang K 2015 Phys. Rev. Appl. 3 024013Google Scholar

    [12]

    史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠 2022 物理学报 71 178202Google Scholar

    Shi X H, Chen J J, Cao X R, Wu S Q, Zhu ZZ 2022 Acta Phy. Sin. 71 178202Google Scholar

    [13]

    Michaud-Rioux V, Zhang L, Guo H 2016 J. Comput. Phys. 307 593Google Scholar

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [16]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [17]

    Xiao R, Li H, Chen L 2012 Chem. Mater. 24 4242Google Scholar

    [18]

    Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Phys. Rev. B 84 045115Google Scholar

    [19]

    Chen Y F, Jiang X, Li Y Y, Li P, Liu Q C, Fu G T, Xu L, Sun D M, Tang Y W 2018 Adv. Mater. Interfaces 5 1701015Google Scholar

    [20]

    Zheng H F, Hu Z Y, Liu P F, Xu W J, Xie Q S, He W, Luo Q, Wang L S, Gu D D, Qu B H, Zhu Z Z, Peng D L 2020 Energy Storage Mater. 25 76Google Scholar

    [21]

    Nakamura T, Ohta K, Hou X Y, Kimura Y, Tsuruta K, Tamenori Y, Aso R, Yoshida H, Amezawa K 2021 J. Mater. Chem. A 9 3657Google Scholar

    [22]

    Limpijumnong S, Van de Walle C G 2004 Phys. Rev. B 69 035207Google Scholar

    [23]

    Ouyang C Y, Šljivančanin Ž, Baldereschi A 2009 Phys. Rev. B 79 235410Google Scholar

    [24]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406Google Scholar

    [25]

    Hu W, Wang H W, Luo W W, Xu B, Ouyang C Y 2020 Solid State Ionics 347 115257Google Scholar

    [26]

    Park J H, Lim J, Yoon J, K S, Gim J, Song J, Park H, Im D, Park M, Ahn D, Paik Y, Kim J 2012 Dalton Trans. 41 3053

  • 图 1  两种富锂锰基三元正极材料的结构对比 (a) Li1.2Ni0.32Co0.04Mn0.44O2的晶体结构图; (b) Li1.167Ni0.167Co0.167Mn0.5O2的晶体结构图. 不同颜色的八面体分别表示: NiO6灰色、CoO6蓝色、MnO6紫色. 氧为红色小球, 锂为绿色的球

    Fig. 1.  Comparison of the structures for two Li-rich Mn-based ternary cathode materials. Crystal structures of (a) Li1.2Ni0.32Co0.04Mn0.44O2 and (b) Li1.167Ni0.167Co0.167Mn0.5O2. The octahedra are denoted by different colors: NiO6 gray, CoO6 blue, and MnO6 purple. Oxygen is given by red balls, lithium is shown by green balls.

    图 2  两种三元材料中 (a) 双空位、三空位和四空位(V2O, V3O和V4O)的形成能. 虚线表示同时拿掉n个氧的空位族形成能, 实线表示分别一个一个拿掉氧的空位族形成能; (b) 双空位、三空位和四空位平均到形成一个氧空位的形成能

    Fig. 2.  Formation energies of oxygen of (a) bivacancy, trivacancy and quadruvacancy (V2O, V3O and V4O) in two materials. The dashed line represents the vacancy formation energy of n oxygens detached at the same time, and the solid line represents the formation energy of oxygen detached one by one. (b) The formation energies of the double, triple and quadruple vacancy averaged to a single oxygen.

    图 3  (a) Li1.2Ni0.32Co0.04Mn0.44O2 和 (b) Li1.167Ni0.167Co0.167Mn0.5O2材料中氧空位簇的形成能随温度的变化关系(氧分压为P = 0.2 bar (1 bar=1×105 Pa)

    Fig. 3.  Formation energy of oxygen vacancy clusters versus temperatures in (a) Li1.2Ni0.32Co0.04Mn0.44O2 and (b) Li1.167Ni0.167Co0.167Mn0.5O2 (oxygen partial pressure is P = 0.2 bar(1 bar=1×105 Pa).

    图 4  (a) Li1.2Ni0.32Co0.04Mn0.44O2 和 (b) Li1.167Ni0.167Co0.167Mn0.5O2 材料中氧空位簇的形成能随氧分压的变化关系(温度为T=300 K)

    Fig. 4.  Formation energy of oxygen vacancy clusters versus oxygen partial pressure in (a) Li1.2Ni0.32Co0.04Mn0.44O2 and (b) Li1.167Ni0.167Co0.167Mn0.5O2 (temperature is T = 300 K).

    图 5  (a) Li1.2Ni0.32Co0.04Mn0.44O2 和 (b) Li1.167Ni0.167Co0.167Mn0.5O2 材料中氧空位簇的形成能随氧分压的变化关系(温度为T=1000 K)

    Fig. 5.  Formation energy of oxygen vacancy clusters versus oxygen partial pressure in (a) Li1.2Ni0.32Co0.04Mn0.44O2 and (b) Li1.167Ni0.167Co0.167Mn0.5O2 (temperature is T = 1000 K).

    图 6  两种材料中(a) VnO-Li空位簇 (V2-Li, V3-Li 和V4-Li) 的形成能以及(b) V2-Li, V3-Li 和V4-Li 体系中平均到形成一个氧空位的形成能

    Fig. 6.  Formation energies of (a) VnO-Li clusters (i.e., V2-Li, V3-Li and V4-Li) and (b) formation energy averaged to a single oxygen vacancy in two materials.

    图 7  Li1.2Ni0.32Co0.04Mn0.44O2材料中, V2O-Li, V3O-Li和V4O-Li空位簇与替位点缺陷的相互作用能 (a) 过渡金属Ni或Mn被Mo替位; (b) 过渡金属Ni或Mn被Ti替位

    Fig. 7.  Interaction energies between the V2O-Li, V3O-Li, V4O-Li vacancy clusters and the substitutional defects in Li1.2Ni0.32Co0.04Mn0.44O2: (a) Transition metal Ni or Mn substituted by Mo; (b) transition metal Ni or Mn substituted by Ti.

    图 8  Li1.167Ni0.167Co0.167Mn0.5O2材料中, V2O-Li, V3O-Li和V4O-Li空位簇与替位点缺陷的相互作用能 (a) 过渡金属Ni或Mn被Mo替位; (b) 过渡金属Ni或Mn被Ti替位

    Fig. 8.  Interaction energies between the V2O-Li, V3O-Li, V4O-Li vacancy clusters and the substitutional defects in Li1.167Ni0.167Co0.167Mn0.5O2: (a) Transition metal Ni or Mn substituted by Mo; (b) transition metal Ni or Mn substituted by Ti.

    表 1  Li1.2Ni0.32Co0.04Mn0.44O2和Li1.167Ni0.167Co0.167Mn0.5O2三元材料中不等价单氧空位的形成能

    Table 1.  Formation energy of a single oxygen vacancy in Li1.2Ni0.32Co0.04Mn0.44O2 and Li1.167Ni0.167Co0.167Mn0.5O2 ternary materials.

    单个氧空位的形成能 /eV
    Li1.2Ni0.32Co0.04Mn0.44O2 Li1.167Ni0.167Co0.167Mn0.5O2
    VO1VO2VO3VO4VO5VO6VO7VO8 VO1VO2VO3VO4
    2.03.312.174.434.153.032.864.27 2.32.803.123.20
    下载: 导出CSV

    表 2  Li1.2Ni0.32Co0.04Mn0.44O2和Li1.167Ni0.167Co0.167Mn0.5O2三元材料中氧空位族中的氧原子被一个一个分别脱去时的形成能

    Table 2.  Formation energy of an oxygen vacancy in vacancy clusters in Li1.2Ni0.32Co0.04Mn0.44O2 and Li1.167Ni0.167Co0.167Mn0.5O2 ternary materials, when the oxygen atoms are extracted one by one, respectively.

    各个单氧空位的形成能 /eV
    氧空位的序号(第n个氧)1234
    Li1.2Ni0.32Co0.04Mn0.44O22.002.781.701.14
    Li1.167Ni0.167Co0.167Mn0.5O22.803.173.022.40
    下载: 导出CSV
  • [1]

    Dunn B, Kamath H, Tarascon J M 2011 Science 334 928Google Scholar

    [2]

    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D 2011 Energy Environ. Sci. 4 3243Google Scholar

    [3]

    Nitta N, Wu F, Lee J T, Yushin G 2015 Mater. Today 18 252Google Scholar

    [4]

    Yuan L X, Wang Z H, Zhang W X, Hu X L, Chen J T, Huang Y H, Goodenough J B 2011 Energy Environ. Sci. 4 269Google Scholar

    [5]

    Liu J L, Hou M Y, Yi J, Guo S S, Wang C X, Xia Y Y 2014 Energy Environ. Sci. 7 705Google Scholar

    [6]

    Csernica P M, Kalirai S S, Gent W E, Lim K, Yu Y S, Liu Y, Ahn S J, Kaeli E, Xu X, Stone K H, Marshall A F, Sinclair R, Shapiro  D A, Toney M F, Chueh W C 2021 Nat. Energy 6 642Google Scholar

    [7]

    Hu E Y, Yu X Q, Lin R Q, Bi X X, Lu J, Bak S M, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K, Yang X Q 2018 Nat. Energy 3 690Google Scholar

    [8]

    Zhu Z, Yu D W, Yang Y, Su C, Huang Y M, Dong Y H, Waluyo I, Wang B M, Hunt A, Yao X H, Lee J, Xue W J, Li J 2019 Nat. Energy 4 1049Google Scholar

    [9]

    Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine  K, Zhang J G, Liu L M, Wang C 2019 Nat. Nanotechnol. 14 602Google Scholar

    [10]

    Lee E, Persson K A 2014 Adv. Energy Mater. 4 1400498Google Scholar

    [11]

    Hoang K 2015 Phys. Rev. Appl. 3 024013Google Scholar

    [12]

    史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠 2022 物理学报 71 178202Google Scholar

    Shi X H, Chen J J, Cao X R, Wu S Q, Zhu ZZ 2022 Acta Phy. Sin. 71 178202Google Scholar

    [13]

    Michaud-Rioux V, Zhang L, Guo H 2016 J. Comput. Phys. 307 593Google Scholar

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [16]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [17]

    Xiao R, Li H, Chen L 2012 Chem. Mater. 24 4242Google Scholar

    [18]

    Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Phys. Rev. B 84 045115Google Scholar

    [19]

    Chen Y F, Jiang X, Li Y Y, Li P, Liu Q C, Fu G T, Xu L, Sun D M, Tang Y W 2018 Adv. Mater. Interfaces 5 1701015Google Scholar

    [20]

    Zheng H F, Hu Z Y, Liu P F, Xu W J, Xie Q S, He W, Luo Q, Wang L S, Gu D D, Qu B H, Zhu Z Z, Peng D L 2020 Energy Storage Mater. 25 76Google Scholar

    [21]

    Nakamura T, Ohta K, Hou X Y, Kimura Y, Tsuruta K, Tamenori Y, Aso R, Yoshida H, Amezawa K 2021 J. Mater. Chem. A 9 3657Google Scholar

    [22]

    Limpijumnong S, Van de Walle C G 2004 Phys. Rev. B 69 035207Google Scholar

    [23]

    Ouyang C Y, Šljivančanin Ž, Baldereschi A 2009 Phys. Rev. B 79 235410Google Scholar

    [24]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406Google Scholar

    [25]

    Hu W, Wang H W, Luo W W, Xu B, Ouyang C Y 2020 Solid State Ionics 347 115257Google Scholar

    [26]

    Park J H, Lim J, Yoon J, K S, Gim J, Song J, Park H, Im D, Park M, Ahn D, Paik Y, Kim J 2012 Dalton Trans. 41 3053

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成. 物理学报, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [4] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [5] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [6] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [7] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [8] 黄文军, 王亚平, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.208Ni0.333Co0.042Mn0.417O2的电子结构和缺陷性质. 物理学报, 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [9] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [10] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [11] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [12] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [13] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究. 物理学报, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [14] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [15] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [16] 郝红飞, 王静, 孙锋, 张澜庭. Dy在Nd2Fe14B晶格中的占位及其对Fe原子磁矩影响的第一性原理计算. 物理学报, 2013, 62(11): 117501. doi: 10.7498/aps.62.117501
    [17] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [18] 刘显坤, 刘颖, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究. 物理学报, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 耶红刚, 陈光德, 竹有章, 张俊武. 六方AlN本征缺陷的第一性原理研究. 物理学报, 2007, 56(9): 5376-5381. doi: 10.7498/aps.56.5376
计量
  • 文章访问数:  6114
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-03
  • 修回日期:  2023-01-05
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回