搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究

莫曼 曾纪术 何浩 张喨 杜龙 方志杰

引用本文:
Citation:

Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究

莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰

The first-principle study on the formation energies of Be, Mg and Mn doped CuInO2

Mo Man, Zeng Ji-Shu, He Hao, Zhang Liang, Du Long, Fang Zhi-Jie
PDF
HTML
导出引用
  • 研制开发新型的光电材料对促进社会经济发展具有重要的科学意义和实用价值. 利用宽禁带CuInO2铟基材料实现全透明光电材料是目前深入研究的热点. 通过基于密度泛函的第一性原理计算方法, 本文计算出掺杂元素Mg, Be, Mn在CuInO2的形成能. 计算结果表明, 施主类缺陷(如掺杂元素替代Cu原子或进入间隙位置)由于较高的形成能和较深的跃迁能级, 很难在CuInO2材料中出现N型导电; 而受主缺陷中, 在氧原子化学势极大的情况下, Mg原子替代In能成为CuInO2理想的受主缺陷. 计算结果可为制备性能优异的CuInO2材料提供指导.
    Exploring new type of optoelectronic materials has fundamental scientific and practical significance in the development of society and economy. Recently, intense research has focused on the use of the wide band-gap bipolarity semiconductor material CuInO2 which will allow to the fabrication of that total transparent optoelectronic materials. However, the conductivity of CuInO2 is significantly lower than other n-type conductivity of other TCOs. As a result, one of the key question is how to improve the electric properties of CuInO2 by doping method. Motivated by this observation, in this paper, using the first-principles methods, the formation energetics properties of dopant (Be, Mg, Mn) in transparent conducting oxides CuInO2 were studied within the local-density approximation. Substituting dopant (Be, Mg, Mn) for In, substituting dopant (Be, Mg, Mn) for Cu and dopant as interstitial in their relevant charge state are considered. By systematically calculating formation energies and transition energy level of defect, the calculated results show that, substituting Mg for In does not induce the large structural relaxation. in CuInO2. One can expect that substituting the Mg and Mn for In introduces acceptor because the relative lower formation energies, furthermore, Be atoms would be substitute for In atoms when the Ef move to CBM. In addition, the donor-type extrinsic defects(such as substituting dopant for Cu and dopant as interstitial) have difficulty in inducing n-conductivity in CuInO2 because of their deep transition energy level or the higher formation energies. Considering the transition energy level position, BeIn, MgIn, and MnIn have transition energy levels at 0.06, 0.05, and 0.40 eV above the VBM, respectively. Thus, for all the acceptor-type extrinsic defects, substituting Mg for In is the most prominent doping acceptor with relative shallow transition energy levels in CuInO2 under O-rich condition. Based on our calculated results and discussion mentioned above, in order to increase p-type conductivity in CuInO2, we could substitute Mg atoms for In atoms by the sit-selective doping method through atomic layer epitaxy growth or controlling the oxygen partial pressure in the molecular beam epitaxy or metal-organic chemical vapor deposition crystal growth process. The calculation results will not only provide the guide for design of new type In-based optoelectronic materials, but will also further understand the potential properties in CuInO2.
      通信作者: 方志杰, nnfang@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11464003, 11864005)、广西自然科学基金(批准号: 2017GXNSFAA198315)、柳州市科技计划项目(批准号: 2016B040202)和广西高校中青年教师基础能力提升项目(批准号: 2018KY0324)资助的课题.
      Corresponding author: Fang Zhi-Jie, nnfang@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11464003,11864005), the Natural Science Foundation of Guangxi, China (Grant No. 2017GXNSFAA198315), the Key Science and Technology Program of Liuzhou, China (Grant No. 2016B040202), and the Science-Technology Foundation for Middle-aged and Young College Teacher of Guangxi, China (Grant No. 2018KY0324).
    [1]

    Ginley D S, Bright C 2000 MRS Bull. 25 8

    [2]

    Wang L J, Wang W Z, Chen Y L, Yao L Z, Zhao X, Shi H L, Cao M S, Liang Y J 2018 ACS Appl. Mat. Interfaces 10 11652Google Scholar

    [3]

    Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1

    [4]

    Chen Y L, Wang L Y, Wang W Z, Cao M S 2017 Appl. Catal. B 209 110Google Scholar

    [5]

    Kawazoe H, Yasukawa M, Hyodo H 1997 Nature 389 939Google Scholar

    [6]

    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H 2000 J. Appl. Phys. 88 4159Google Scholar

    [7]

    Nakanishi A, Katayama-Yoshida H, Ishikawa T, Shimizu K 2016 J. Phys. Soc. Jpn. 85 094711Google Scholar

    [8]

    Jedidi A, Rasul S, Masih D, Cavallo L, Takanabe K 2015 J. Mater. Chem. A 3 19085Google Scholar

    [9]

    Nie X, Wei S H, Zhang S B 2002 Phys. Rev. Lett. 88 066405Google Scholar

    [10]

    Hamada I, Katayama-Yoshida H 2006 Physsica B 377 808

    [11]

    Jiang H F, Zhu X B, Lei H C, Li G, Yang Z R 2011 Thin Solids Film 519 2559Google Scholar

    [12]

    Shimode M, Sasaki M, Mukaida K 2000 J. Soli. Stat. Chem. 151 16Google Scholar

    [13]

    Liu Q J, Liu Z T, Feng L P 2010 Physica B 405 2028Google Scholar

    [14]

    Singh M, Mehta B R, Varandani D, Singh V N 2009 J. Appl. Phys. 106 053709Google Scholar

    [15]

    Ye F, Cai X M, Dai F P, Zhang D P, Fan P, Liu L J 2011 Adv. Mater. Res. 239 242

    [16]

    Shin D, Foord J S, Payne D J 2009 Phys. Rev. B 80 233105Google Scholar

    [17]

    Varandani D, Singh B, Mehta B, Singh M, Singh V, Nand G D 2010 J. Appl. Phys. 107 103703Google Scholar

    [18]

    Roland G, John R 2011 Phys. Rev. B 84 035125Google Scholar

    [19]

    Godinho K G, Morgan B J, Allen J P, Scanlon D O, Watson G W 2011 J. Phys.: Cond. Matter 23 334201Google Scholar

    [20]

    Yao Y, Xie G, Song N, Yu X H, Li R X 2011 Adv. Mater. Res. 399 401

    [21]

    Liu L, Bai K W, Gong H, Wu P 2005 Phys. Rev. B 72 125204Google Scholar

    [22]

    Blouchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [24]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864Google Scholar

    [25]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [29]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [30]

    Murnaghan F D, Natl P 1944 Acad. Sci. USA 30 244Google Scholar

    [31]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [32]

    Wei S H 2004 Comput. Mat. Sci. 30 337Google Scholar

  • 图 1  CuInO2晶体结构图, 图中红色原子为O原子, 灰色原子为In原子, 棕色原子为Cu原子 (a)黄色掺杂原子替代Cu原子的情况; (b)绿色掺杂原子替代In原子的情况

    Fig. 1.  The crystal structure of the CuInO2, the red atoms are O atoms, the brown atoms are Cu atoms, the purple atoms are In atoms: (a) Substituting yellow dopant atom for Cu atom; (b) substituting green dopant atom for In atom.

    图 2  掺杂形成能在cation-poor, anion-rich的变化图

    Fig. 2.  The change of doping formation energies under cation-poor, anion-rich condition.

    图 3  掺杂形成能在cation-rich, anion-poor的变化图

    Fig. 3.  The change of doping formation energies under cation-rich, anion-poor condition.

    图 4  掺杂元素在CuInO2的缺陷跃迁能级

    Fig. 4.  The calculated transition energy levels of the extrinsic defects in CuInO2.

    表 1  CuInO2晶格常数理论计算值与实验值

    Table 1.  Theoretical values and experimental values of lattice constants in CuInO2.

    CuInO2 晶格常数理论计算值 晶格常数实验值
    a 3.297 Å a 3.292 Å
    c 17.192 Å c 17.388 Å
    u 0.1047 Å u 0.1061 Å
    c/a 5.214 c/a 5.282
    下载: 导出CSV

    表 2  掺杂元素周围的弛豫变化情况, 键距后括号为掺杂原子的近邻原子种类和个数

    Table 2.  The surrounding atoms of dopant, kinds and numbers of dopantxs nearest neighbor atoms in parentheses.

    掺杂种类 最近邻键距 掺杂种类 最近邻键距 掺杂种类 最近邻键距
    BeCu 1.49 Å(O, 2) MgCu 1.85 Å(O, 2) MnCu 1.77Å(O, 2)
    BeIn 1.96 Å(O, 6) MgIn 2.12 Å(O, 6) MnIn 1.93Å(O, 6)
    Bei 1.62 Å(O, 3) Mgi 2.04 Å(O, 3) Mni 1.99Å(O, 3)
    下载: 导出CSV

    表 3  CuInO2的掺杂元素形成能

    Table 3.  The calculated formation energies of dopants in CuInO2.

    掺杂类型 形成能 掺杂类型 总能/eV 形成能 掺杂类型 总能/eV 形成能
    BeCu –2.20 MgCu –650.87 –2.58 MnCu –654.63 1.76
    BeIn 0.79 MgIn –651.36 –1.59 MnIn –656.54 1.33
    Bei –1.05 Mgi –654.27 –1.27 Mni –657.39 3.71
    下载: 导出CSV
  • [1]

    Ginley D S, Bright C 2000 MRS Bull. 25 8

    [2]

    Wang L J, Wang W Z, Chen Y L, Yao L Z, Zhao X, Shi H L, Cao M S, Liang Y J 2018 ACS Appl. Mat. Interfaces 10 11652Google Scholar

    [3]

    Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1

    [4]

    Chen Y L, Wang L Y, Wang W Z, Cao M S 2017 Appl. Catal. B 209 110Google Scholar

    [5]

    Kawazoe H, Yasukawa M, Hyodo H 1997 Nature 389 939Google Scholar

    [6]

    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H 2000 J. Appl. Phys. 88 4159Google Scholar

    [7]

    Nakanishi A, Katayama-Yoshida H, Ishikawa T, Shimizu K 2016 J. Phys. Soc. Jpn. 85 094711Google Scholar

    [8]

    Jedidi A, Rasul S, Masih D, Cavallo L, Takanabe K 2015 J. Mater. Chem. A 3 19085Google Scholar

    [9]

    Nie X, Wei S H, Zhang S B 2002 Phys. Rev. Lett. 88 066405Google Scholar

    [10]

    Hamada I, Katayama-Yoshida H 2006 Physsica B 377 808

    [11]

    Jiang H F, Zhu X B, Lei H C, Li G, Yang Z R 2011 Thin Solids Film 519 2559Google Scholar

    [12]

    Shimode M, Sasaki M, Mukaida K 2000 J. Soli. Stat. Chem. 151 16Google Scholar

    [13]

    Liu Q J, Liu Z T, Feng L P 2010 Physica B 405 2028Google Scholar

    [14]

    Singh M, Mehta B R, Varandani D, Singh V N 2009 J. Appl. Phys. 106 053709Google Scholar

    [15]

    Ye F, Cai X M, Dai F P, Zhang D P, Fan P, Liu L J 2011 Adv. Mater. Res. 239 242

    [16]

    Shin D, Foord J S, Payne D J 2009 Phys. Rev. B 80 233105Google Scholar

    [17]

    Varandani D, Singh B, Mehta B, Singh M, Singh V, Nand G D 2010 J. Appl. Phys. 107 103703Google Scholar

    [18]

    Roland G, John R 2011 Phys. Rev. B 84 035125Google Scholar

    [19]

    Godinho K G, Morgan B J, Allen J P, Scanlon D O, Watson G W 2011 J. Phys.: Cond. Matter 23 334201Google Scholar

    [20]

    Yao Y, Xie G, Song N, Yu X H, Li R X 2011 Adv. Mater. Res. 399 401

    [21]

    Liu L, Bai K W, Gong H, Wu P 2005 Phys. Rev. B 72 125204Google Scholar

    [22]

    Blouchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [24]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864Google Scholar

    [25]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [29]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [30]

    Murnaghan F D, Natl P 1944 Acad. Sci. USA 30 244Google Scholar

    [31]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [32]

    Wei S H 2004 Comput. Mat. Sci. 30 337Google Scholar

  • [1] 王雪冰, 唐春梅, 谢梓涵, 俞瑞, 严杰, 蒋承乐. Mo掺杂二维VS2吸附有毒气体的理论研究. 物理学报, 2024, 73(1): 013101. doi: 10.7498/aps.73.20231236
    [2] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率. 物理学报, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [3] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [4] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [5] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [6] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [7] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率. 物理学报, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [8] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [9] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [10] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [11] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] 郝红飞, 王静, 孙锋, 张澜庭. Dy在Nd2Fe14B晶格中的占位及其对Fe原子磁矩影响的第一性原理计算. 物理学报, 2013, 62(11): 117501. doi: 10.7498/aps.62.117501
    [14] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [15] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究. 物理学报, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [16] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究. 物理学报, 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [17] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究. 物理学报, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [18] 杜丽萍, 陈抱雪, 孙 蓓, 陈 直, 邹林儿, 浜中广见, 矶 守. 掺杂As2S8非晶态薄膜波导的光阻断效应. 物理学报, 2008, 57(6): 3593-3599. doi: 10.7498/aps.57.3593
    [19] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响. 物理学报, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
    [20] 王先杰, 隋 郁, 千正男, 刘志国, 苗继鹏, 黄喜强, 吕 喆, 朱瑞滨, 程金光, 苏文辉. Fe位Al掺杂对Sr2FeMoO6磁结构和磁输运性质的影响. 物理学报, 2006, 55(2): 849-853. doi: 10.7498/aps.55.849
计量
  • 文章访问数:  14565
  • PDF下载量:  829
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-04-10
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回