搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究

张梅玲 陈玉红 张材荣 李公平

引用本文:
Citation:

内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究

张梅玲, 陈玉红, 张材荣, 李公平

Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study

Zhang Mei-Ling, Chen Yu-Hong, Zhang Cai-Rong, Li Gong-Ping
PDF
HTML
导出引用
  • 采用基于自旋密度泛函理论的平面波超软赝势方法, 研究了Cu掺杂ZnO (简称CuZn)与内在缺陷共存对ZnO电磁光性质的影响. 结果表明, Cu是以替位受主的形式掺入的; 制备条件对CuZn及内在缺陷的形成起至关重要的作用, 富氧条件下Cu掺杂有利于内在缺陷的形成, 且CuZn-Oi最易形成; 相反在缺氧条件下, Cu掺杂不利于内在缺陷的形成. 替位Cu的3d电子在价带顶形成未占据受主能级, 产生p导电类型. 与CuZn体系相比, CuZn-VO体系中载流子浓度降低, 导电性变差; CuZn-VZn体系中载流子浓度几乎不变, 对导电性没影响; CuZn-Oi体系中载流子浓度升高, 导电性增强. 纯ZnO体系无磁性; 而Cu掺杂ZnO体系, 与Cu原子相连的O原子, 电负性越小, 键长越短, 对磁矩贡献越大; CuZn与CuZn-Oi体系中的磁矩主要是Cu的3d电子与Z轴上O的2p电子耦合产生的; CuZn中存在空位缺陷(VO, VZn)时, 磁矩主要是Cu 3d电子与XY平面内O的2p电子强烈耦合所致; CuZn中存在VZn时, 磁性还包含VZn周围O(5, 6)号原子2p轨道自旋极化的贡献; 所有体系中Zn原子自旋对称, 不产生磁性. CuZn-VZn和CuZn-Oi缺陷能态中, 深能级中产生的诱导态是O-O 2s电子相互作用产生的. CuZn模型的光学带隙减小, 导致吸收边红移; CuZn-VZn模型中吸收和反射都增强, 使得透射率降低.
    For ZnO which is not magnetic itself, it is of great significance to study the source of ferromagnetism and its photoelectric properties when Cu doped ZnO coexists with internal defects. The effects of intrinsic defects on the electronic structures, magnetic and optical properties of Cu-doped ZnO (CuZn) are studied by using first principle calculations based on the density functional theory combined with the Hubbard U (DFT + Ud + Up). The results indicate that the doped Cu is a substitute acceptor, and the manufacturing environment plays an important role in forming the CuZn with internal defects. Under the oxygen-rich condition, the doped Cu is favorable for forming internal defects, and the CuZn—Oi bonds are easily formed. On the contrary, the Cu-doped ZnO is not conducive to forming internal defects under the O-poor condition. The 3d electrons of the substitute Cu form the unoccupied accepter energy level at the top of valence band, generating p-type conduction. Comparing with CuZn system, the carrier concentration of positive hole decreases in CuZn-VO system and the conductivity is poor. In the CuZn-VZn system, the number of carrier holes is almost constant, and the conductivity has no effect. In the CuZn-Oi model, the carrier concentration of positive holes increases and the conductivity gets better. The pure ZnO system exhibits non-magnetic behavior. The study also reveals that the smaller the electro-negativity, the greater the contribution to magnetic moment is when O atom is connected with Cu atom. The magnetic moments in CuZn and CuZn-Oi system are mainly generated by the coupling between the Cu 3d and the O 2p orbital on the c axis. When VO and VZn exist in CuZn, the magnetic moment is mainly caused by the strong coupling of Cu 3d with O 2p in ab plane. In the presence of VZn in CuZn, the magnetism also contains the contribution of the spin polarization of O(5, 6) atoms around VZn. In the defect states of CuZn-VZn and CuZn-Oi, the induced states in the deep energy levels are generated by the interaction between the O-O 2s orbital electrons. The reduced optical band gap of the CuZn model results in the red shift of absorption spectrum. The enhanced absorption and reflection of the CuZn-VZn model reduce the transmission.
      通信作者: 张梅玲, Zhangml_2000@126.com
    • 基金项目: 国家自然科学基金(批准号: 51562022, 11575074)和兰州理工大学红柳一流学科建设计划资助的课题.
      Corresponding author: Zhang Mei-Ling, Zhangml_2000@126.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 51562022, 11575074) and the HongLiu First-class Disciplines Development Program of Lanzhou University and Technology, China.
    [1]

    Wang Z L 2008 ACS Nano 2 1987Google Scholar

    [2]

    Ahn K S, Deutsch T, Yan Y, Jiang C S, Perkins C L, Turner J, Jassim M A 2007 J. Appl. Phys. 102 023517Google Scholar

    [3]

    Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, Driscoll J L M 2005 Appl. Phys. Lett. 86 072514Google Scholar

    [4]

    Drmosh Q A, Rao S G, Yamani Z H, Gondal M A 2013 Appl. Surf. Sci. 270 104Google Scholar

    [5]

    Suja M, Bashar S B, Morshed M M, Liu J 2015 ACS Appl. Mater. Interfaces 7 8894Google Scholar

    [6]

    Chakraborty M, Ghosh A, Thangavel R 2015 J. Sol-Gel Sci. Technol. 74 756Google Scholar

    [7]

    Horzum S, Torun E, Serin T, Peeters F M 2016 Philos. Mag. 96 1743Google Scholar

    [8]

    Vachhani P S, Bhatnagar A K 2013 Phys. Scr. 8715 045702

    [9]

    Xia C H, Wang F, Hu C L 2014 J. Alloys Compd. 589 604Google Scholar

    [10]

    侯清玉, 许镇潮, 乌云, 赵二俊 2015 物理学报 64 167201Google Scholar

    Hou Q Y, Xu Z C, Wu Y, Zhao E J 2015 Acta Phys. Sin. 64 167201Google Scholar

    [11]

    Iqbal J, Jan T, Shafiq M, Arshad A, Ahmad N, Badshah S, Yu R H 2014 Ceram. Int. 40 2091Google Scholar

    [12]

    Li T J, Li G P, Gao X X, Chen J S 2010 Chin. Phys. Lett. 27 211

    [13]

    Nia B A, Shahrokhi M, Moradian R, Manouchehri I 2014 Eur. Phys. J. Appl. Phys. 67 20403Google Scholar

    [14]

    Keavney D J, Buchholz D B, Ma Q, Chang R P 2007 Appl. Phys. Lett. 91 012501Google Scholar

    [15]

    Xu Q Y, Schmidt H, Zhou S Q, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008 Appl. Phys. Lett. 92 082508Google Scholar

    [16]

    Zhu M Y, Zhang Z H, Zhong M, Tariq M, Li Y, Li W X, Jin H M, Skotnicova K, Li Y B 2017 Ceram. Int. 43 3166Google Scholar

    [17]

    Luo J H, Liu Q, Yang L N, Sun Z Z, Li Z S 2014 Comput. Mater. Sci. 82 70Google Scholar

    [18]

    Wang Q B, Zhou C, Wu J, Lü T 2013 Opt. Commun. 297 79Google Scholar

    [19]

    Chen Y F, Song Q G, Yan H Y 2012 Comput. Theor. Chem. 983 65Google Scholar

    [20]

    Lee M H, Peng Y C, Wu H C 2014 J. Alloys Compd. 616 122Google Scholar

    [21]

    Wu H C, Peng Y C, Chen C C 2013 Opt. Mater. 35 509Google Scholar

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [25]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B: Condens. Matter 44 943Google Scholar

    [26]

    Monkhost H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892Google Scholar

    [28]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202Google Scholar

    [29]

    Guo T T, Dong G B, Chen Q, Diao X G, Gao F Y 2014 J. Phys. Chem. Solids 75 42Google Scholar

    [30]

    Sun H G, Fan W L, Li Y L, Cheng X F, Li P, Hao J C, Zhao X 2011 Phys. Chem. Chem. Phys. 13 1379Google Scholar

    [31]

    Chen Y, Xu X L, Zhang G H, Xue H, Ma S Y 2009 Physica B 404 3645Google Scholar

    [32]

    段壮芬, 王新强, 何阿玲, 程志梅 2011 原子与分子物理学报 28 343Google Scholar

    Duan Z F, Wang X Q, He A L, Cheng Z M 2011 J. At. Mol. Phys. 28 343Google Scholar

    [33]

    Ferhat M, Zaoui A, Ahuja R 2009 Appl. Phys. Lett. 94 142502Google Scholar

    [34]

    Yan Y F, Aljassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912Google Scholar

    [35]

    Narendra G L, Sreedhar B, Rao J L, Lakshman S V J 1991 J. Mater. Sci. 26 5342Google Scholar

    [36]

    Lee H Y, Clark S J, Robertson J 2012 Phys. Rev. B 86 075209Google Scholar

    [37]

    林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 物理学报 66 037101Google Scholar

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101Google Scholar

    [38]

    Zhao L, Lu P F, Yu Z Y, Liu Y M, Wang D L, Ye H 2010 Chin. Phys. B 19 056104Google Scholar

    [39]

    徐庆岩, 吴雪梅, 诸葛兰剑, 陈学梅, 吴兆丰 2008 微细加工技术 12 16

    Xu Q Y, Wu X M, Zhuge L J, Chen X M, Wu Z F 2008 MicroFabric. Tech. 12 16

  • 图 1  2 × 2 × 2的ZnO的超胞 (红色代替O原子, 蓝紫色代替的是Zn原子)

    Fig. 1.  2 × 2 × 2 ZnO supercell (where the red components represent the O atoms, gray represents the Zn atoms)

    图 2  (a) ZnO能带结构图; (b) ZnO分波态密度图

    Fig. 2.  (a) Band Structures of ZnO; (b) PDOS of ZnO

    图 3  优化后的晶体结构图 (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    Fig. 3.  Structure of crystal cell after optimized: (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    图 5  分波态密度(图中虚线为费米能级) (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    Fig. 5.  PDOS (the dotted line in the graph is the Fermi energy level ): (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    图 4  能带结构图(图中虚线为费米能级) (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    Fig. 4.  Band structures (the dotted line in the graph is the Fermi energy level): (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    图 6  ZnO, CuZn及含不同内在缺陷时(CuZn-VO, CuZn-VZn, CuZn-Oi)介电函数的虚部

    Fig. 6.  The imaginary part of the dielectric function of ZnO, CuZn, CuZn-VO, CuZn-VZn, CuZn-Oi

    图 7  有内在缺陷CuZn的吸收光谱

    Fig. 7.  Absorption of CuZn with varying intrinsic defects

    图 8  有内在缺陷CuZn的反射光谱

    Fig. 8.  Reflectivity of CuZn with varying intrinsic defects

    表 1  ZnO和CuZn缺陷的形成能(单位: eV)

    Table 1.  Formation energy of ZnO and CuZn with intrinsic defects (in eV)

    缺陷类型 VO VZn Oi Cui CuZn CuZn-VO CuZn-VZn CuZn-Oi
    O-rich 6.603 0.915 –0.548 5.795 –0.495 6.337 0.422 –0.965
    O-poor 1.308 6.210 4.747 4.026 3.031 4.569 9.244 7.856
    下载: 导出CSV

    表 2  ZnO模型的带隙和空穴浓度P

    Table 2.  Band gap and hole concertration P of ZnO model

    ZnO CuZn CuZn-VO CuZn-VZn CuZn-Oi
    禁带宽度/eV 3.370 2.577 2.413 2.597 1.885
    光学带隙/eV 3.370 0.980 0.228 1.108 0.195
    P 0.068 1.344 1.107 1.321 1.574
    下载: 导出CSV
  • [1]

    Wang Z L 2008 ACS Nano 2 1987Google Scholar

    [2]

    Ahn K S, Deutsch T, Yan Y, Jiang C S, Perkins C L, Turner J, Jassim M A 2007 J. Appl. Phys. 102 023517Google Scholar

    [3]

    Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, Driscoll J L M 2005 Appl. Phys. Lett. 86 072514Google Scholar

    [4]

    Drmosh Q A, Rao S G, Yamani Z H, Gondal M A 2013 Appl. Surf. Sci. 270 104Google Scholar

    [5]

    Suja M, Bashar S B, Morshed M M, Liu J 2015 ACS Appl. Mater. Interfaces 7 8894Google Scholar

    [6]

    Chakraborty M, Ghosh A, Thangavel R 2015 J. Sol-Gel Sci. Technol. 74 756Google Scholar

    [7]

    Horzum S, Torun E, Serin T, Peeters F M 2016 Philos. Mag. 96 1743Google Scholar

    [8]

    Vachhani P S, Bhatnagar A K 2013 Phys. Scr. 8715 045702

    [9]

    Xia C H, Wang F, Hu C L 2014 J. Alloys Compd. 589 604Google Scholar

    [10]

    侯清玉, 许镇潮, 乌云, 赵二俊 2015 物理学报 64 167201Google Scholar

    Hou Q Y, Xu Z C, Wu Y, Zhao E J 2015 Acta Phys. Sin. 64 167201Google Scholar

    [11]

    Iqbal J, Jan T, Shafiq M, Arshad A, Ahmad N, Badshah S, Yu R H 2014 Ceram. Int. 40 2091Google Scholar

    [12]

    Li T J, Li G P, Gao X X, Chen J S 2010 Chin. Phys. Lett. 27 211

    [13]

    Nia B A, Shahrokhi M, Moradian R, Manouchehri I 2014 Eur. Phys. J. Appl. Phys. 67 20403Google Scholar

    [14]

    Keavney D J, Buchholz D B, Ma Q, Chang R P 2007 Appl. Phys. Lett. 91 012501Google Scholar

    [15]

    Xu Q Y, Schmidt H, Zhou S Q, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008 Appl. Phys. Lett. 92 082508Google Scholar

    [16]

    Zhu M Y, Zhang Z H, Zhong M, Tariq M, Li Y, Li W X, Jin H M, Skotnicova K, Li Y B 2017 Ceram. Int. 43 3166Google Scholar

    [17]

    Luo J H, Liu Q, Yang L N, Sun Z Z, Li Z S 2014 Comput. Mater. Sci. 82 70Google Scholar

    [18]

    Wang Q B, Zhou C, Wu J, Lü T 2013 Opt. Commun. 297 79Google Scholar

    [19]

    Chen Y F, Song Q G, Yan H Y 2012 Comput. Theor. Chem. 983 65Google Scholar

    [20]

    Lee M H, Peng Y C, Wu H C 2014 J. Alloys Compd. 616 122Google Scholar

    [21]

    Wu H C, Peng Y C, Chen C C 2013 Opt. Mater. 35 509Google Scholar

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [25]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B: Condens. Matter 44 943Google Scholar

    [26]

    Monkhost H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892Google Scholar

    [28]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202Google Scholar

    [29]

    Guo T T, Dong G B, Chen Q, Diao X G, Gao F Y 2014 J. Phys. Chem. Solids 75 42Google Scholar

    [30]

    Sun H G, Fan W L, Li Y L, Cheng X F, Li P, Hao J C, Zhao X 2011 Phys. Chem. Chem. Phys. 13 1379Google Scholar

    [31]

    Chen Y, Xu X L, Zhang G H, Xue H, Ma S Y 2009 Physica B 404 3645Google Scholar

    [32]

    段壮芬, 王新强, 何阿玲, 程志梅 2011 原子与分子物理学报 28 343Google Scholar

    Duan Z F, Wang X Q, He A L, Cheng Z M 2011 J. At. Mol. Phys. 28 343Google Scholar

    [33]

    Ferhat M, Zaoui A, Ahuja R 2009 Appl. Phys. Lett. 94 142502Google Scholar

    [34]

    Yan Y F, Aljassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912Google Scholar

    [35]

    Narendra G L, Sreedhar B, Rao J L, Lakshman S V J 1991 J. Mater. Sci. 26 5342Google Scholar

    [36]

    Lee H Y, Clark S J, Robertson J 2012 Phys. Rev. B 86 075209Google Scholar

    [37]

    林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 物理学报 66 037101Google Scholar

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101Google Scholar

    [38]

    Zhao L, Lu P F, Yu Z Y, Liu Y M, Wang D L, Ye H 2010 Chin. Phys. B 19 056104Google Scholar

    [39]

    徐庆岩, 吴雪梅, 诸葛兰剑, 陈学梅, 吴兆丰 2008 微细加工技术 12 16

    Xu Q Y, Wu X M, Zhuge L J, Chen X M, Wu Z F 2008 MicroFabric. Tech. 12 16

  • [1] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [2] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [3] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究. 物理学报, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [4] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [5] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [6] 侯清玉, 许镇潮, 乌云, 赵二俊. Cu掺杂ZnO稀磁半导体磁电性能影响的模拟计算. 物理学报, 2015, 64(16): 167201. doi: 10.7498/aps.64.167201
    [7] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [8] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [9] 郝红飞, 王静, 孙锋, 张澜庭. Dy在Nd2Fe14B晶格中的占位及其对Fe原子磁矩影响的第一性原理计算. 物理学报, 2013, 62(11): 117501. doi: 10.7498/aps.62.117501
    [10] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [11] 张伟, 徐朝鹏, 王海燕, 陈飞鸿, 何畅. 碘化铟晶体本征缺陷的第一性原理研究. 物理学报, 2013, 62(24): 243101. doi: 10.7498/aps.62.243101
    [12] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究. 物理学报, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [13] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [14] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [15] 刘显坤, 刘颖, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究. 物理学报, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [16] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [17] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究. 物理学报, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [18] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [19] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [20] 耶红刚, 陈光德, 竹有章, 张俊武. 六方AlN本征缺陷的第一性原理研究. 物理学报, 2007, 56(9): 5376-5381. doi: 10.7498/aps.56.5376
计量
  • 文章访问数:  10589
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-20
  • 修回日期:  2019-02-20
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回