搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比

袁国才 陈曦 黄雨阳 毛俊西 禹劲秋 雷晓波 张勤勇

引用本文:
Citation:

Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比

袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇

Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li

Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong
PDF
HTML
导出引用
  • 采用两步固相法合成了物相均匀的Mg2(1–x)Ag2xSi0.3Sn0.7 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05)和Mg2(1–y)Li2ySi0.3Sn0.7 (y = 0, 0.02, 0.04, 0.06, 0.08)热电材料, 测试了室温物理性能和室温至773 K的热电性能, 研究了不同掺杂剂的固溶度、微观结构、载流子浓度、电性能和热输运. X射线衍射图谱和扫描电子显微镜图像显示掺杂Ag和Li的固溶度分别为x = 0.03和y = 0.06. 根据单抛物线模型, p型的Mg2(1–x)Ag2xSi0.3Sn0.7和Mg2(1–y)Li2ySi0.3Sn0.7的有效质量为1.2m0. 对比结果表明: 掺杂Ag或Li的最大载流子浓度分别达到4.64 × 1019 cm–3和15.1 × 1019 cm–3; 掺杂Li元素的样品有较高的固溶度、较高的载流子浓度和较高的功率因子PF约为1.62 × 10–3 W·m–1·K–2; 掺杂Li元素样品中较高的载流子浓度能够有效抑制双极效应, 显著降低双极热导率; Mg1.92Li0.08Si0.3Sn0.7的最大ZT值0.54, 比Mg1.9Ag0.1Si0.3Sn0.7的最大ZT值0.34提高了大约58%. 根据Callaway理论, 由于质量场波动和应变场波动增强声子散射, 掺杂Ag和Li元素样品的晶格热导率比未掺杂样品明显降低.
    In recent decades, Mg2(Si, Sn) solid solutions have long been considered as one of the most important classes of eco-friendly thermoelectric materials. The thermoelectric performance of Mg2(Si, Sn) solid solutions with outstanding characteristics of low-price, non-toxicity, earth-abundant and low-density has been widely studied. The n-type Mg2(Si, Sn) solid solutions have achieved the dimensionless thermoelectric figure of merit ZT ~1.4 through Bi/Sb doping and convergence of conduction bands. However, the thermoelectric performances for p-type Mg2(Si, Sn) solid solutions are mainly improved by optimizing the carrier concentration. In this work, the thermoelectric properties for p-type Mg2Si0.3Sn0.7 are investigated and compared with those for different p-type dopant Ag or Li. The homogeneous Mg2Si0.3Sn0.7 with Ag or Li doping is synthesized by two-step solid-state reaction method at temperatures of 873 K and 973 K for 24 h, respectively. The transport parameters and the thermoelectric properties are measured at temperatures ranging from room temperature to 773 K for Mg2(1–x)Ag2xSi0.3Sn0.7 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) and Mg2(1–y)Li2ySi0.3Sn0.7 (y = 0, 0.02, 0.04, 0.06, 0.08) samples. The influences of different dopants on solid solubility, microstructure, carrier concentration, electrical properties and thermal transport are also investigated. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images show that the solid solubility for Ag and for Li are x = 0.03 and y = 0.06, respectively. Based on the assumption of single parabolic band model, the value of effective mass ~1.2m0 of p-type Mg2(1–x)Ag2xSi0.3Sn0.7 and Mg2(1–y)Li2ySi0.3Sn0.7 are similar to that reported in the literature. The comparative results demonstrate that the maximum carrier concentration for Ag doping and for Li doping are 4.64×1019 cm–3 for x = 0.01 and 15.1×1019 cm–3 for y = 0.08 at room temperature, respectively; the Li element has higher solid solubility in Mg2(Si, Sn), which leads to higher carrier concentration and power factor PF ~1.62×10–3 ${\rm W}\cdot{\rm m^{–1}}\cdot{\rm K^{–2}}$ in Li doped samples; the higher carrier concentration of Li doped samples effectively suppresses the bipolar effect; the maximum of ZT ~0.54 for Mg1.92Li0.08Si0.3Sn0.7 is 58% higher than that of Mg1.9Ag0.1Si0.3Sn0.7 samples. The lattice thermal conductivity of Li or Ag doped sample decreases obviously due to the stronger mass and strain field fluctuations in phonon transport.
      通信作者: 张勤勇, zhangqy@mail.xhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51572226)、四川省科技支撑计划(批准号: 2015GZ0060)和国家创新创业训练项目(批准号: 201710623)资助的课题.
      Corresponding author: Zhang Qin-Yong, zhangqy@mail.xhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572226), the Science and Technology Foundation of Sichuan Province, China (Grant No. 2015GZ0060), and the Chinese Innovation and Entrepreneurship Training Project (Grant No. 201710623).
    [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Bell L E 2008 Science 321 1457Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder G J, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    朱航天, 任武洋, 张勤勇, 任志锋 2018 西华大学学报(自然科学版) 37 15Google Scholar

    Zhu H T, Ren W Y, Zhang Q Y, Ren Z F 2018 J. Xihua Univ. (Natural Science Edition) 37 15Google Scholar

    [6]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [7]

    Mao J, Wang Y, Ge B, Jie Q, Liu Z, Saparamadu U, Liu W, Ren Z 2016 Phys. Chem. Chem. Phys. 18 20726Google Scholar

    [8]

    Lu Q, Wu M, Wu D, Chang C, Guo Y P, Zhou C S, Li W, Ma X M, Wang G, Zhao L D, Huang L, Liu C, He J 2017 Phys. Rev. Lett. 119 116401Google Scholar

    [9]

    Pei Y, Lalonde A D, Wang H, Snyder G J 2012 Energy Environ. Sci. 5 7963Google Scholar

    [10]

    张勤勇, 袁国才, 王俊臣, 毛俊西, 雷晓波 2018 西华大学学报(自然科学版) 37 1Google Scholar

    Zhang Q Y, Yuan G C, Wang J C, Mao J X, Lei X B 2018 J. Xihua Univ. (Natural Science Edition) 37 1Google Scholar

    [11]

    Paul B, Ajay Kumar V, Banerji P 2010 J. Appl. Phys. 108 064322Google Scholar

    [12]

    Xie W J, Yan Y G, Zhu S, Zhou M, Populoh S, Gałązka K, Poon S J, Weidenkaff A, He J, Tang X F, Tritt T M 2013 Acta Mater. 61 2087Google Scholar

    [13]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [14]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246Google Scholar

    [15]

    Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W, Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033Google Scholar

    [16]

    Xiao Y, Wu H, Li W, Yin M, Pei Y, Zhang Y, Fu L, Chen Y, Pennycook S J, Huang L, He J, Zhao L D 2017 J. Am. Chem. Soc. 139 18732Google Scholar

    [17]

    王浚臣, 袁国才, 禹劲秋, 莫小波, 金应荣, 黄丽宏 2018 西华大学学报(自然科学版) 37 68Google Scholar

    Wang J C, Yuan G C, Yu J Q, Mo X B, Jin Y R, Huang L H 2018 Journal of Xihua University (Natural Science Edition) 37 68Google Scholar

    [18]

    de Boor J, Dasgupta T, Saparamadu U, Müller E, Ren Z F 2017 Mater. Today Energy 4 105Google Scholar

    [19]

    Bashir M B A, Mohd Said S, Sabri M F M, Shnawah D A, Elsheikh M H 2014 Renewable and Sustainable Energy Reviews 37 569Google Scholar

    [20]

    Santos R, Aminorroaya Yamini S, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Liu W, Yin K, Zhang Q, Uher C, Tang X 2017 Nat. Sci. Rev. 4 611Google Scholar

    [22]

    Pulikkotil J J, Singh D J, Auluck S, Saravanan M, Misra D K, Dhar A, Budhani R C 2012 Phys. Rev. B 86 155204Google Scholar

    [23]

    Sun J, Singh D J 2016 Phys. Rev. Appl. 5 024006Google Scholar

    [24]

    Tani J I, Kido H 2008 Intermetallics 16 418Google Scholar

    [25]

    Tani J I, Kido H 2012 Physica B 407 3493Google Scholar

    [26]

    Imai Y, Mori Y, Nakamura S, Takarabe K I 2013 J. Alloys Compd. 549 175Google Scholar

    [27]

    Tani J I, Kido H 2008 J. Alloys Compd. 466 335Google Scholar

    [28]

    Zhang Q, He J, Zhao X B, Zhang S N, Zhu T J, Yin H, Tritt T M 2008 J. Phys. D: Appl. Phys. 41 185103Google Scholar

    [29]

    Luo W J, Yang M J, Fei C, Shen Q, Jiang H G, Zhang L M 2010 Mater. Trans. 51 288Google Scholar

    [30]

    Liu W, Tang X, Li H, Yin K, Sharp J, Zhou X, Uher C 2012 J. Mater. Chem. 22 13653Google Scholar

    [31]

    Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H 2011 J. Alloys Compd. 509 6503Google Scholar

    [32]

    Tada S, Isoda Y, Udono H, Fujiu H, Kumagai S, Shinohara Y 2014 J. Electron. Mater. 43 1580

    [33]

    Zhang Q, Cheng L, Liu W, Zheng Y, Su X, Chi H, Liu H, Yan Y, Tang X, Uher C 2014 Phys. Chem. Chem. Phys. 16 23576Google Scholar

    [34]

    Tang X, Zhang Y, Zheng Y, Peng K, Huang T, Lu X, Wang G, Wang S, Zhou X 2017 Appl. Therm. Eng. 111 1396Google Scholar

    [35]

    Yin K, Zhang Q, Zheng Y, Su X, Tang X, Uher C 2015 J. Mater. Chem. C 3 10381Google Scholar

    [36]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X, Zhang Q, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893Google Scholar

    [37]

    de Boor J, Saparamadu U, Mao J, Dahal K, Müller E, Ren Z 2016 Acta Mater. 120 273Google Scholar

    [38]

    Saparamadu U, de Boor J, Mao J, Song S, Tian F, Liu W, Zhang Q, Ren Z 2017 Acta Mater. 141 154Google Scholar

    [39]

    Gao P, Davis J D, Poltavets V V, Hogan T P 2016 J. Mater. Chem. C 4 929Google Scholar

    [40]

    Tang X, Wang G, Zheng Y, Zhang Y, Peng K, Guo L, Wang S, Zeng M, Dai J, Wang G, Zhou X 2016 Scripta Mater. 115 52Google Scholar

    [41]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [42]

    Yang J, Meisner G P, Chen L 2004 Appl. Phys. Lett. 85 1140Google Scholar

    [43]

    覃玉婷, 仇鹏飞, 史迅, 陈立东 2017 无机材料学报 32 1171

    Qin Y T, Qiu P F, Shi X, Chen L D 2017 J. Inorg. Mater. 32 1171

    [44]

    Slack G A 1957 Phys. Rev. 105 832Google Scholar

    [45]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

  • 图 1  Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的XRD图谱(a), (c)与晶格常数(b), (d)

    Fig. 1.  XRD patterns (a), (c) and lattice constant (b), (d) of Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 2  (a), (b), (c)分别为Mg2Si0.3Sn0.7, Mg1.9Ag0.1Si0.3Sn0.7,Mg1.92Li0.08Si0.3Sn0.7的SEM图像; (d) Mg1.92Li0.08Si0.3Sn0.7的背散射图像

    Fig. 2.  (a), (b) and (c) are SEM images of Mg2Si0.3Sn0.7, Mg1.9Ag0.1Si0.3Sn0.7, and Mg1.92Li0.08Si0.3Sn0.7; (d) the back scattered electron image of Mg1.92Li0.08Si0.3Sn0.7

    图 3  Seebeck系数S与载流子浓度p之间的Pisarenko关系

    Fig. 3.  The Pisarenko plot between Seebeck coefficient S and carrier concentration p

    图 4  (a)—(f) Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的电导率、Seebeck系数和功率因子与温度的关系

    Fig. 4.  The temperature dependence of (a), (d) electrical conductivity, (b), (e) Seebeck coefficient and (c), (f) power factor for Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 5  (a)—(f) Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的热导率, 晶格热导率和ZT值与温度的关系图

    Fig. 5.  The temperature dependence of (a), (d) thermal conductivity, (b), (e) lattice thermal conductivity and (c), (f) ZT for Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 6  Mg2Si0.3Sn0.7的掺杂Ag和Li浓度与质量场波动散射因子ΓM和应变场波动散射因子ΓS的关系

    Fig. 6.  The relation of (a) the mass fluctuation scattering parameter ΓM, (b) strain field fluctuation scattering parameter ΓS and doping Ag, Li content of Mg2Si0.3Sn0.7

    表 1  Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)在300 K的物理参数

    Table 1.  Physical parameters of Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08) at 300 K

    Compositionσ/104 S·m–1RH/cm3·C–1p/1019 cm–3μ/cm2·V–1·s–1S/μV·K–1m*(m0)
    x = 00.15–3.22–0.1948.3–458.01.6
    x = 0.013.480.1354.6446.8154.71.2
    x = 0.023.330.1733.6057.7166.41.1
    x = 0.033.730.1863.3569.5163.81.0
    x = 0.043.110.1554.0348.2160.61.1
    x = 0.053.620.1534.0953.7154.71.1
    y = 0.0211.200.05611.1063.190.71.0
    y = 0.049.650.04414.0042.891.31.2
    y = 0.0613.140.04214.7055.882.21.1
    y = 0.089.740.04115.1040.283.91.2
    下载: 导出CSV
  • [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Bell L E 2008 Science 321 1457Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder G J, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    朱航天, 任武洋, 张勤勇, 任志锋 2018 西华大学学报(自然科学版) 37 15Google Scholar

    Zhu H T, Ren W Y, Zhang Q Y, Ren Z F 2018 J. Xihua Univ. (Natural Science Edition) 37 15Google Scholar

    [6]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [7]

    Mao J, Wang Y, Ge B, Jie Q, Liu Z, Saparamadu U, Liu W, Ren Z 2016 Phys. Chem. Chem. Phys. 18 20726Google Scholar

    [8]

    Lu Q, Wu M, Wu D, Chang C, Guo Y P, Zhou C S, Li W, Ma X M, Wang G, Zhao L D, Huang L, Liu C, He J 2017 Phys. Rev. Lett. 119 116401Google Scholar

    [9]

    Pei Y, Lalonde A D, Wang H, Snyder G J 2012 Energy Environ. Sci. 5 7963Google Scholar

    [10]

    张勤勇, 袁国才, 王俊臣, 毛俊西, 雷晓波 2018 西华大学学报(自然科学版) 37 1Google Scholar

    Zhang Q Y, Yuan G C, Wang J C, Mao J X, Lei X B 2018 J. Xihua Univ. (Natural Science Edition) 37 1Google Scholar

    [11]

    Paul B, Ajay Kumar V, Banerji P 2010 J. Appl. Phys. 108 064322Google Scholar

    [12]

    Xie W J, Yan Y G, Zhu S, Zhou M, Populoh S, Gałązka K, Poon S J, Weidenkaff A, He J, Tang X F, Tritt T M 2013 Acta Mater. 61 2087Google Scholar

    [13]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [14]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246Google Scholar

    [15]

    Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W, Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033Google Scholar

    [16]

    Xiao Y, Wu H, Li W, Yin M, Pei Y, Zhang Y, Fu L, Chen Y, Pennycook S J, Huang L, He J, Zhao L D 2017 J. Am. Chem. Soc. 139 18732Google Scholar

    [17]

    王浚臣, 袁国才, 禹劲秋, 莫小波, 金应荣, 黄丽宏 2018 西华大学学报(自然科学版) 37 68Google Scholar

    Wang J C, Yuan G C, Yu J Q, Mo X B, Jin Y R, Huang L H 2018 Journal of Xihua University (Natural Science Edition) 37 68Google Scholar

    [18]

    de Boor J, Dasgupta T, Saparamadu U, Müller E, Ren Z F 2017 Mater. Today Energy 4 105Google Scholar

    [19]

    Bashir M B A, Mohd Said S, Sabri M F M, Shnawah D A, Elsheikh M H 2014 Renewable and Sustainable Energy Reviews 37 569Google Scholar

    [20]

    Santos R, Aminorroaya Yamini S, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Liu W, Yin K, Zhang Q, Uher C, Tang X 2017 Nat. Sci. Rev. 4 611Google Scholar

    [22]

    Pulikkotil J J, Singh D J, Auluck S, Saravanan M, Misra D K, Dhar A, Budhani R C 2012 Phys. Rev. B 86 155204Google Scholar

    [23]

    Sun J, Singh D J 2016 Phys. Rev. Appl. 5 024006Google Scholar

    [24]

    Tani J I, Kido H 2008 Intermetallics 16 418Google Scholar

    [25]

    Tani J I, Kido H 2012 Physica B 407 3493Google Scholar

    [26]

    Imai Y, Mori Y, Nakamura S, Takarabe K I 2013 J. Alloys Compd. 549 175Google Scholar

    [27]

    Tani J I, Kido H 2008 J. Alloys Compd. 466 335Google Scholar

    [28]

    Zhang Q, He J, Zhao X B, Zhang S N, Zhu T J, Yin H, Tritt T M 2008 J. Phys. D: Appl. Phys. 41 185103Google Scholar

    [29]

    Luo W J, Yang M J, Fei C, Shen Q, Jiang H G, Zhang L M 2010 Mater. Trans. 51 288Google Scholar

    [30]

    Liu W, Tang X, Li H, Yin K, Sharp J, Zhou X, Uher C 2012 J. Mater. Chem. 22 13653Google Scholar

    [31]

    Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H 2011 J. Alloys Compd. 509 6503Google Scholar

    [32]

    Tada S, Isoda Y, Udono H, Fujiu H, Kumagai S, Shinohara Y 2014 J. Electron. Mater. 43 1580

    [33]

    Zhang Q, Cheng L, Liu W, Zheng Y, Su X, Chi H, Liu H, Yan Y, Tang X, Uher C 2014 Phys. Chem. Chem. Phys. 16 23576Google Scholar

    [34]

    Tang X, Zhang Y, Zheng Y, Peng K, Huang T, Lu X, Wang G, Wang S, Zhou X 2017 Appl. Therm. Eng. 111 1396Google Scholar

    [35]

    Yin K, Zhang Q, Zheng Y, Su X, Tang X, Uher C 2015 J. Mater. Chem. C 3 10381Google Scholar

    [36]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X, Zhang Q, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893Google Scholar

    [37]

    de Boor J, Saparamadu U, Mao J, Dahal K, Müller E, Ren Z 2016 Acta Mater. 120 273Google Scholar

    [38]

    Saparamadu U, de Boor J, Mao J, Song S, Tian F, Liu W, Zhang Q, Ren Z 2017 Acta Mater. 141 154Google Scholar

    [39]

    Gao P, Davis J D, Poltavets V V, Hogan T P 2016 J. Mater. Chem. C 4 929Google Scholar

    [40]

    Tang X, Wang G, Zheng Y, Zhang Y, Peng K, Guo L, Wang S, Zeng M, Dai J, Wang G, Zhou X 2016 Scripta Mater. 115 52Google Scholar

    [41]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [42]

    Yang J, Meisner G P, Chen L 2004 Appl. Phys. Lett. 85 1140Google Scholar

    [43]

    覃玉婷, 仇鹏飞, 史迅, 陈立东 2017 无机材料学报 32 1171

    Qin Y T, Qiu P F, Shi X, Chen L D 2017 J. Inorg. Mater. 32 1171

    [44]

    Slack G A 1957 Phys. Rev. 105 832Google Scholar

    [45]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

  • [1] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [2] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [3] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [4] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [5] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [6] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [7] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [8] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [9] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [10] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  6843
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-04-04
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回