搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能

张贺 骆军 朱航天 刘泉林 梁敬魁 饶光辉

引用本文:
Citation:

Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能

张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉

Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2

Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui
PDF
导出引用
  • 利用熔融快淬结合放电等离子烧结(SPS), 制备了CuxAg1-xSbTe2(x= 00.3)样品. 粉末x射线衍射(XRD)分析结果显示, SPS处理以前, 含Cu样品形成NaCl型结构的固溶体, 而未加入Cu的样品析出Ag2Te第二相. 根据热分析和XRD测量结果, Cu的加入能够有效抑制Ag2Te的析出, 但同时会在快淬样品中产生少量非晶相. 在温度升高到540 K左右时, 非晶相发生晶化, 形成Sb7Te亚稳相, 并最终转变成Sb2Te3稳定相. 对快淬样品进行低温SPS快速处理后, x =0.1样品为面心立方结构的单相化合物, 但是x=0.2, 0.3的样品分别析出第二相Sb7Te和Sb2Te3. 由于析出第二相, x=0.2, 0.3样品的电导率增大, Seebeck系数减小, 热导率相应升高, 综合热电性能降低.x=0.1单相样品的功率因子与文献报道的AgSbTe2化合物相当. 元素替代的合金化效应 增强了Cu0.1Ag0.9SbTe2化合物的声子散射, 有效降低了样品的热导率. 因此, 单相样品Cu0.1Ag0.9SbTe2表现出较佳的热电性能, 在620 K时热电优值达到1.
    CuxAg1-xSbTe2 samples withx = 00.3 are prepared by a combined process of melt-quenching and spark plasma sintering (SPS). X-ray powder diffraction (XRD) analysis indicates that single phase samples with the NaCl-type structure are obtained for the Cu-doped samples before SPS treatment, whereas a small quantity of Ag2Te impurities coexist with the main cubic phase for the sample without Cu. According to our thermoanalysis and XRD results, the substitution of Cu for Ag can effectively prevent the precipitation of Ag2Te, but this also leads to the presence of a minor amorphous phase in the melt-quenched sample. The amorphous phase crystallizes into Sb7Te metastable phase at about 540 K, which finally transforms into the stable Sb2Te3 compound. After the SPS treatment of the melt-quenched sample, the sample withx=0.1 remains a single phase with the face-centered-cubic crystal structure, while Sb7Te and Sb2Te3 are precipitated as the second phases for the samples withx = 0.2 and 0.3, respectively. The electrical conductivity increases and the Seebeck coefficient decreases with the addition of Cu due to the existence of the second phase in the samples withx = 0.2 and 0.3. Accordingly, thermal conductivities also increase with the addition of Cu, leading to the reduced thermoelectric performance of thex= 0.2 and 0.3 samples. For the sample withx = 0.1, its power factor is comparable to that of the literature reported AgSbTe2 compound. As a result of so-called alloying effect, the phonon scattering effect is enhanced due to the partial replacement of Ag by Cu, leading to the reduced thermal conductivity of thex = 0.1 sample. Therefore, the Cu0.1Ag0.9SbTe2 sample exhibits the promising thermoelectric performance and a dimensionless thermoelectric figure of merit (ZT) value of 1 is achieved at 620 K.
    • 基金项目: 国家自然科学基金 (批准号: 11144002)、国家重点基础研究发展计划 (批准号: 2007CB925003) 和教育部科学技术研究计划重大项目(批准号: 309006)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11144002), the State Key Development Program for Basic Research of China (Grant No. 2007CB925003), and the Major Program of Science and Technology Research of Ministry of Education, China (Grant No. 309006).
    [1]

    Tritt T M 1999 Science 283 804

    [2]

    Rowe D M 2005 CRC Handbook of Thermoelectric Materials (New York: CRC Press)

    [3]

    Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178

    [4]

    Vining C B 2008 Nat. Mater. 7 765

    [5]

    Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D 2006 J. Appl. Phys. 99 023708

    [6]

    Kim J H, Okamoto N L, Kishida K, Tanaka K, Inui H 2006 Acta Mater. 54 2057

    [7]

    Nolas G S, Kaeser M, Littleton R T, Tritt T M 2000 Appl. Phys. Lett. 77 1855

    [8]

    Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081

    [9]

    Tanga X, Zhang Q, Chen L, Goto T, Hirai T 2005 J. Appl. Phys. 97 093712

    [10]

    Puyet M, Dauscher A, Lenoir B, Dehmas M, Stiewe C, M黮ler E, Hejtmanek J 2005 J. Appl. Phys. 97 083712

    [11]

    Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873

    [12]

    Fisher I R, Bud'ko S L, Song C, Canfield P C, Ozawa T C, Kauzlarich S M 2000 Phys. Rev. Lett. 85 1120

    [13]

    Akrap A, Barišic N, Forro L, Mandrus D, Sales B C 2007 Phys. Rev. B 76 085203

    [14]

    Sales B C 2002 Science 295 1248

    [15]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z 2007 Adv. Mater. 19 1043

    [16]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2007 Nature 451 168

    [17]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597

    [18]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C 2004 Science 303 818

    [19]

    Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403

    [20]

    Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450

    [21]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [22]

    Hockings E F 1959 J. Phys. Chem. Solids 10 341

    [23]

    Ma H A, Su T C, Zhu P W, Guo J G, Jia X P 2008 J. Alloys Compd. 454 415

    [24]

    Wang H, Li J F, Nan C W, Zhou M 2006 Appl. Phys. Lett. 88 092104

    [25]

    Majer R G 1963 Z. Metall. 54 311

    [26]

    Marin R M, Brun G, Tedenac J C 1985 J. Mater. Sci. 20 730

    [27]

    Matsushita H, Hagiwara E, Katsui A 2004 J. Mater. Sci. 39 6299

    [28]

    McHugh J P, Tiller W A, Haszkko S E, Wernick J H 1961 J. Appl. Phys. 32 1785

    [29]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M 2008 Phys. Rev. B 77 245203

    [30]

    Yang S H, Zhu T J, Sun T, He J, Zhang S N, Zhao X B 2008 Nanotechnology 9 245707

    [31]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [32]

    Petzow G, Effenberg G 1988 Ternary Alloys 2 554

    [33]

    Ayralmarin R M, Brun G, Maurin M, Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747

    [34]

    Du L B, Li H, Tang X F 2011 J. Alloys Compd. 509 2039

    [35]

    Zhang S N, Jing G Y, Zhu T J, Zhao X B, Yang S H 2011 Int. J. Min. Met. Mater. 18 352

    [36]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [37]

    Wang H, Li J F, Zou M M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [38]

    Du B L, Han L, Xu J J, Tang X F, Uher C 2010 Chem. Mater. 22 5521

    [39]

    Du B, Xu J, Zhang W, Tang X 2011 J. Electron. Mater. 40 1249

  • [1]

    Tritt T M 1999 Science 283 804

    [2]

    Rowe D M 2005 CRC Handbook of Thermoelectric Materials (New York: CRC Press)

    [3]

    Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178

    [4]

    Vining C B 2008 Nat. Mater. 7 765

    [5]

    Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D 2006 J. Appl. Phys. 99 023708

    [6]

    Kim J H, Okamoto N L, Kishida K, Tanaka K, Inui H 2006 Acta Mater. 54 2057

    [7]

    Nolas G S, Kaeser M, Littleton R T, Tritt T M 2000 Appl. Phys. Lett. 77 1855

    [8]

    Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081

    [9]

    Tanga X, Zhang Q, Chen L, Goto T, Hirai T 2005 J. Appl. Phys. 97 093712

    [10]

    Puyet M, Dauscher A, Lenoir B, Dehmas M, Stiewe C, M黮ler E, Hejtmanek J 2005 J. Appl. Phys. 97 083712

    [11]

    Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873

    [12]

    Fisher I R, Bud'ko S L, Song C, Canfield P C, Ozawa T C, Kauzlarich S M 2000 Phys. Rev. Lett. 85 1120

    [13]

    Akrap A, Barišic N, Forro L, Mandrus D, Sales B C 2007 Phys. Rev. B 76 085203

    [14]

    Sales B C 2002 Science 295 1248

    [15]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z 2007 Adv. Mater. 19 1043

    [16]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2007 Nature 451 168

    [17]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597

    [18]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C 2004 Science 303 818

    [19]

    Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403

    [20]

    Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450

    [21]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [22]

    Hockings E F 1959 J. Phys. Chem. Solids 10 341

    [23]

    Ma H A, Su T C, Zhu P W, Guo J G, Jia X P 2008 J. Alloys Compd. 454 415

    [24]

    Wang H, Li J F, Nan C W, Zhou M 2006 Appl. Phys. Lett. 88 092104

    [25]

    Majer R G 1963 Z. Metall. 54 311

    [26]

    Marin R M, Brun G, Tedenac J C 1985 J. Mater. Sci. 20 730

    [27]

    Matsushita H, Hagiwara E, Katsui A 2004 J. Mater. Sci. 39 6299

    [28]

    McHugh J P, Tiller W A, Haszkko S E, Wernick J H 1961 J. Appl. Phys. 32 1785

    [29]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M 2008 Phys. Rev. B 77 245203

    [30]

    Yang S H, Zhu T J, Sun T, He J, Zhang S N, Zhao X B 2008 Nanotechnology 9 245707

    [31]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [32]

    Petzow G, Effenberg G 1988 Ternary Alloys 2 554

    [33]

    Ayralmarin R M, Brun G, Maurin M, Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747

    [34]

    Du L B, Li H, Tang X F 2011 J. Alloys Compd. 509 2039

    [35]

    Zhang S N, Jing G Y, Zhu T J, Zhao X B, Yang S H 2011 Int. J. Min. Met. Mater. 18 352

    [36]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [37]

    Wang H, Li J F, Zou M M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [38]

    Du B L, Han L, Xu J J, Tang X F, Uher C 2010 Chem. Mater. 22 5521

    [39]

    Du B, Xu J, Zhang W, Tang X 2011 J. Electron. Mater. 40 1249

  • [1] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [2] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [3] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220584
    [4] 李彩云, 何文科, 王东洋, 张潇, 赵立东. 通过插层Cu实现SnSe2的高效热电性能. 物理学报, 2021, 70(20): 208401. doi: 10.7498/aps.70.20211444
    [5] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [6] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [7] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [8] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [10] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [11] 宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐. Yb3+:Gd2SiO5晶体的结构和光谱性能. 物理学报, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [12] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [13] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响. 物理学报, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [14] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [15] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究. 物理学报, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [16] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [17] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [18] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [19] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [20] 伏广才, 李明星, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质. 物理学报, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
计量
  • 文章访问数:  5060
  • PDF下载量:  939
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-22
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能

  • 1. 北京科技大学材料科学与工程学院, 新金属材料国家重点实验室, 北京 100083;
  • 2. 中国科学院物理研究所, 北京 100190
    基金项目: 国家自然科学基金 (批准号: 11144002)、国家重点基础研究发展计划 (批准号: 2007CB925003) 和教育部科学技术研究计划重大项目(批准号: 309006)资助的课题.

摘要: 利用熔融快淬结合放电等离子烧结(SPS), 制备了CuxAg1-xSbTe2(x= 00.3)样品. 粉末x射线衍射(XRD)分析结果显示, SPS处理以前, 含Cu样品形成NaCl型结构的固溶体, 而未加入Cu的样品析出Ag2Te第二相. 根据热分析和XRD测量结果, Cu的加入能够有效抑制Ag2Te的析出, 但同时会在快淬样品中产生少量非晶相. 在温度升高到540 K左右时, 非晶相发生晶化, 形成Sb7Te亚稳相, 并最终转变成Sb2Te3稳定相. 对快淬样品进行低温SPS快速处理后, x =0.1样品为面心立方结构的单相化合物, 但是x=0.2, 0.3的样品分别析出第二相Sb7Te和Sb2Te3. 由于析出第二相, x=0.2, 0.3样品的电导率增大, Seebeck系数减小, 热导率相应升高, 综合热电性能降低.x=0.1单相样品的功率因子与文献报道的AgSbTe2化合物相当. 元素替代的合金化效应 增强了Cu0.1Ag0.9SbTe2化合物的声子散射, 有效降低了样品的热导率. 因此, 单相样品Cu0.1Ag0.9SbTe2表现出较佳的热电性能, 在620 K时热电优值达到1.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回