搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能

张贺 骆军 朱航天 刘泉林 梁敬魁 饶光辉

引用本文:
Citation:

Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能

张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉

Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2

Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui
PDF
导出引用
  • 利用熔融快淬结合放电等离子烧结(SPS), 制备了CuxAg1-xSbTe2(x= 00.3)样品. 粉末x射线衍射(XRD)分析结果显示, SPS处理以前, 含Cu样品形成NaCl型结构的固溶体, 而未加入Cu的样品析出Ag2Te第二相. 根据热分析和XRD测量结果, Cu的加入能够有效抑制Ag2Te的析出, 但同时会在快淬样品中产生少量非晶相. 在温度升高到540 K左右时, 非晶相发生晶化, 形成Sb7Te亚稳相, 并最终转变成Sb2Te3稳定相. 对快淬样品进行低温SPS快速处理后, x =0.1样品为面心立方结构的单相化合物, 但是x=0.2, 0.3的样品分别析出第二相Sb7Te和Sb2Te3. 由于析出第二相, x=0.2, 0.3样品的电导率增大, Seebeck系数减小, 热导率相应升高, 综合热电性能降低.x=0.1单相样品的功率因子与文献报道的AgSbTe2化合物相当. 元素替代的合金化效应 增强了Cu0.1Ag0.9SbTe2化合物的声子散射, 有效降低了样品的热导率. 因此, 单相样品Cu0.1Ag0.9SbTe2表现出较佳的热电性能, 在620 K时热电优值达到1.
    CuxAg1-xSbTe2 samples withx = 00.3 are prepared by a combined process of melt-quenching and spark plasma sintering (SPS). X-ray powder diffraction (XRD) analysis indicates that single phase samples with the NaCl-type structure are obtained for the Cu-doped samples before SPS treatment, whereas a small quantity of Ag2Te impurities coexist with the main cubic phase for the sample without Cu. According to our thermoanalysis and XRD results, the substitution of Cu for Ag can effectively prevent the precipitation of Ag2Te, but this also leads to the presence of a minor amorphous phase in the melt-quenched sample. The amorphous phase crystallizes into Sb7Te metastable phase at about 540 K, which finally transforms into the stable Sb2Te3 compound. After the SPS treatment of the melt-quenched sample, the sample withx=0.1 remains a single phase with the face-centered-cubic crystal structure, while Sb7Te and Sb2Te3 are precipitated as the second phases for the samples withx = 0.2 and 0.3, respectively. The electrical conductivity increases and the Seebeck coefficient decreases with the addition of Cu due to the existence of the second phase in the samples withx = 0.2 and 0.3. Accordingly, thermal conductivities also increase with the addition of Cu, leading to the reduced thermoelectric performance of thex= 0.2 and 0.3 samples. For the sample withx = 0.1, its power factor is comparable to that of the literature reported AgSbTe2 compound. As a result of so-called alloying effect, the phonon scattering effect is enhanced due to the partial replacement of Ag by Cu, leading to the reduced thermal conductivity of thex = 0.1 sample. Therefore, the Cu0.1Ag0.9SbTe2 sample exhibits the promising thermoelectric performance and a dimensionless thermoelectric figure of merit (ZT) value of 1 is achieved at 620 K.
    • 基金项目: 国家自然科学基金 (批准号: 11144002)、国家重点基础研究发展计划 (批准号: 2007CB925003) 和教育部科学技术研究计划重大项目(批准号: 309006)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11144002), the State Key Development Program for Basic Research of China (Grant No. 2007CB925003), and the Major Program of Science and Technology Research of Ministry of Education, China (Grant No. 309006).
    [1]

    Tritt T M 1999 Science 283 804

    [2]

    Rowe D M 2005 CRC Handbook of Thermoelectric Materials (New York: CRC Press)

    [3]

    Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178

    [4]

    Vining C B 2008 Nat. Mater. 7 765

    [5]

    Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D 2006 J. Appl. Phys. 99 023708

    [6]

    Kim J H, Okamoto N L, Kishida K, Tanaka K, Inui H 2006 Acta Mater. 54 2057

    [7]

    Nolas G S, Kaeser M, Littleton R T, Tritt T M 2000 Appl. Phys. Lett. 77 1855

    [8]

    Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081

    [9]

    Tanga X, Zhang Q, Chen L, Goto T, Hirai T 2005 J. Appl. Phys. 97 093712

    [10]

    Puyet M, Dauscher A, Lenoir B, Dehmas M, Stiewe C, M黮ler E, Hejtmanek J 2005 J. Appl. Phys. 97 083712

    [11]

    Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873

    [12]

    Fisher I R, Bud'ko S L, Song C, Canfield P C, Ozawa T C, Kauzlarich S M 2000 Phys. Rev. Lett. 85 1120

    [13]

    Akrap A, Barišic N, Forro L, Mandrus D, Sales B C 2007 Phys. Rev. B 76 085203

    [14]

    Sales B C 2002 Science 295 1248

    [15]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z 2007 Adv. Mater. 19 1043

    [16]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2007 Nature 451 168

    [17]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597

    [18]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C 2004 Science 303 818

    [19]

    Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403

    [20]

    Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450

    [21]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [22]

    Hockings E F 1959 J. Phys. Chem. Solids 10 341

    [23]

    Ma H A, Su T C, Zhu P W, Guo J G, Jia X P 2008 J. Alloys Compd. 454 415

    [24]

    Wang H, Li J F, Nan C W, Zhou M 2006 Appl. Phys. Lett. 88 092104

    [25]

    Majer R G 1963 Z. Metall. 54 311

    [26]

    Marin R M, Brun G, Tedenac J C 1985 J. Mater. Sci. 20 730

    [27]

    Matsushita H, Hagiwara E, Katsui A 2004 J. Mater. Sci. 39 6299

    [28]

    McHugh J P, Tiller W A, Haszkko S E, Wernick J H 1961 J. Appl. Phys. 32 1785

    [29]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M 2008 Phys. Rev. B 77 245203

    [30]

    Yang S H, Zhu T J, Sun T, He J, Zhang S N, Zhao X B 2008 Nanotechnology 9 245707

    [31]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [32]

    Petzow G, Effenberg G 1988 Ternary Alloys 2 554

    [33]

    Ayralmarin R M, Brun G, Maurin M, Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747

    [34]

    Du L B, Li H, Tang X F 2011 J. Alloys Compd. 509 2039

    [35]

    Zhang S N, Jing G Y, Zhu T J, Zhao X B, Yang S H 2011 Int. J. Min. Met. Mater. 18 352

    [36]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [37]

    Wang H, Li J F, Zou M M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [38]

    Du B L, Han L, Xu J J, Tang X F, Uher C 2010 Chem. Mater. 22 5521

    [39]

    Du B, Xu J, Zhang W, Tang X 2011 J. Electron. Mater. 40 1249

  • [1]

    Tritt T M 1999 Science 283 804

    [2]

    Rowe D M 2005 CRC Handbook of Thermoelectric Materials (New York: CRC Press)

    [3]

    Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178

    [4]

    Vining C B 2008 Nat. Mater. 7 765

    [5]

    Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D 2006 J. Appl. Phys. 99 023708

    [6]

    Kim J H, Okamoto N L, Kishida K, Tanaka K, Inui H 2006 Acta Mater. 54 2057

    [7]

    Nolas G S, Kaeser M, Littleton R T, Tritt T M 2000 Appl. Phys. Lett. 77 1855

    [8]

    Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081

    [9]

    Tanga X, Zhang Q, Chen L, Goto T, Hirai T 2005 J. Appl. Phys. 97 093712

    [10]

    Puyet M, Dauscher A, Lenoir B, Dehmas M, Stiewe C, M黮ler E, Hejtmanek J 2005 J. Appl. Phys. 97 083712

    [11]

    Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873

    [12]

    Fisher I R, Bud'ko S L, Song C, Canfield P C, Ozawa T C, Kauzlarich S M 2000 Phys. Rev. Lett. 85 1120

    [13]

    Akrap A, Barišic N, Forro L, Mandrus D, Sales B C 2007 Phys. Rev. B 76 085203

    [14]

    Sales B C 2002 Science 295 1248

    [15]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z 2007 Adv. Mater. 19 1043

    [16]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2007 Nature 451 168

    [17]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597

    [18]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C 2004 Science 303 818

    [19]

    Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403

    [20]

    Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450

    [21]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [22]

    Hockings E F 1959 J. Phys. Chem. Solids 10 341

    [23]

    Ma H A, Su T C, Zhu P W, Guo J G, Jia X P 2008 J. Alloys Compd. 454 415

    [24]

    Wang H, Li J F, Nan C W, Zhou M 2006 Appl. Phys. Lett. 88 092104

    [25]

    Majer R G 1963 Z. Metall. 54 311

    [26]

    Marin R M, Brun G, Tedenac J C 1985 J. Mater. Sci. 20 730

    [27]

    Matsushita H, Hagiwara E, Katsui A 2004 J. Mater. Sci. 39 6299

    [28]

    McHugh J P, Tiller W A, Haszkko S E, Wernick J H 1961 J. Appl. Phys. 32 1785

    [29]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M 2008 Phys. Rev. B 77 245203

    [30]

    Yang S H, Zhu T J, Sun T, He J, Zhang S N, Zhao X B 2008 Nanotechnology 9 245707

    [31]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [32]

    Petzow G, Effenberg G 1988 Ternary Alloys 2 554

    [33]

    Ayralmarin R M, Brun G, Maurin M, Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747

    [34]

    Du L B, Li H, Tang X F 2011 J. Alloys Compd. 509 2039

    [35]

    Zhang S N, Jing G Y, Zhu T J, Zhao X B, Yang S H 2011 Int. J. Min. Met. Mater. 18 352

    [36]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [37]

    Wang H, Li J F, Zou M M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [38]

    Du B L, Han L, Xu J J, Tang X F, Uher C 2010 Chem. Mater. 22 5521

    [39]

    Du B, Xu J, Zhang W, Tang X 2011 J. Electron. Mater. 40 1249

  • [1] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231886
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [5] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [6] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [9] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [10] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [11] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相. 物理学报, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [12] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [13] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [14] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [15] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计. 物理学报, 2020, 69(13): 134303. doi: 10.7498/aps.69.20200368
    [16] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [17] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [18] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [19] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  7073
  • PDF下载量:  986
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-22
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回