-
Cu3SbSe4是一种具有黄铜矿结构的三元p-型半导体材料, 在热电领域颇受重视. 本次工作采用在Cu3SbSe4中先掺杂Sn与S, 然后再掺杂Ga2Te3这一多组元掺杂方式, 通过能带及晶体结构计算, 了解多组元掺杂后热电性能提升的结构因素. 能带计算表明, 共掺杂Sn与S后, 禁带区域萌生出杂质带, 导致材料的载流子浓度(nH)和电学性能大幅提高. 在691 K时, 功率因子(PF)从本征的5.2 μW·cm–1·K–2增大到13.0 μW·cm–1·K–2. 虽然Ga占位在Sb或Te占位在Se位置对能带结构作用甚少, 但四面体[SbSe4]和[SeCu3Sb]的键长和键角发生了改变, 从而产生了明显的局部点阵畸变. 因此, 在691 K时, 晶格热导率(κL)从1.23 W·K–1·m–1降低到0.81 W·K–1·m–1, 有效地抑制了总热导率(κ)的提高. 最终, 材料的最大热电优值(ZT)为0.64, 而本征Cu3SbSe4的ZT值为0.26.
Cu3SbSe4, one of the ternary p-type semiconductor materials with chalcopyrite structure, has aroused much interest in thermoelectrics due to its inherent large effective mass and narrow bandgap. Therefore, many researches have been done, which cover the single and/or multi-element doping to manipulate its band structure and introduce the point defects. Although great achievements have been made in recent years, the mechanism in Cu3SbSe4 with respect to the phonon and electronic transport properties needs further investigating. In this work, first, Sn and S are co-doped into Cu3SbSe4 and then the resulting compound is alloyed with Ga2Te3, to improve its TE performance and understand the mechanism by calculating the band structure and crystal structure. The calculation of band structure reveals that an impurity band is created within the bandgap after co-doping Sn and S due to their contributions to the density of the states (DOS), which is directly responsible for the significant improvement in carrier concentration (nH) and electrical property. Therefore, the power factor (PF) is enhanced from 0.52 × 10–3 to 1.3 × 10–3 W·m–1·K–2. Although the effect associated with the Ga (Te) residing at Sb (Se) sites on the band structure is limited due to the fact that both the single Ga- and single Te-doped band structure remain almost unchanged, the structural parameters (bond lengths and angles) of the polyhedrons [SeCu3Sb] and [SbSe4] before and after Te and Ga residing at Se and Sb sites respectively change remarkably. This yields the significant distortion of local lattice structure on an atomic scale. Therefore, the phonon scattering is enhanced and the lattice thermal conductivity (κL) decreases from 1.23 to 0.81 W·K–1·m–1 at 691 K. The reduction in κL prevents the total thermal conductivity (κ) from being enhanced rapidly. As a consequence, the highest ZT value of 0.64 is attained, which is much higher than that of the pristine Cu3SbSe4 (ZT = 0.26). In addition, we not only present a synergistic strategy to separately optimize the phonon and electronic properties, but also fully elaborate its mechanism and better understand that this strategy is an effective way to improve the TE performance of the Cu3SbSe4-based solid solutions. -
Keywords:
- thermoelectric performance /
- band structure /
- Cu3SbSe4 /
- thermal cnductivity /
- crystal structure
[1] Wei T, Wang H, Gibbs Z, Wu C, Snyder G J, Li J 2014 J. Mater. Chem. A 2 13527Google Scholar
[2] Zhang D, Yang J Y, Jiang Q H, Zhou Z W, Li X, Xin J W, Basit A, Ren Y Y, He X, Chu W J, Hou J D 2017 ACS Appl. Mater. Interfaces 9 28558Google Scholar
[3] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清 2017 物理学报 66 167201Google Scholar
Chen L N, Liu Y F, Zhang J Y, Yang J, Xing J J, Luo J, Zhang W Q 2017 Acta Phys. Sin. 66 167201Google Scholar
[4] Zhao D G, Wu D, Bo L 2017 Energies 10 1524Google Scholar
[5] Chang C H, Chen C L, Chiu W T, Chen Y Y 2017 Mater. Lett. 186 227Google Scholar
[6] Zhang D, Yang J Y, Jiang Q H, Fu L W, Xiao Y, Luo Y B, Zhou Z W 2016 Mater. Des. 98 150Google Scholar
[7] Li Y Y, Qin X Y, Li D, Li X Y, Liu Y F, Zhang J, Song C J, Xin H X 2015 RSC Adv. 5 31399Google Scholar
[8] Yang C Y, Huang F Q, Wu L M, Xu K 2011 J. Phys. D: Appl. Phys. 44 295404Google Scholar
[9] Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2019 Mater. Res. Bull. 113 38Google Scholar
[10] Prasad K S, Rao A 2019 J. Mater. Sci. - Mater. Electron. 30 16596Google Scholar
[11] Wang B Y, Wang Y L, Zheng S Q, Liu S C, Li J, Chang S Y, An T, Sun W L, Chen Y X 2019 J. Alloys Compd. 806 676Google Scholar
[12] Skoug E J, Cain J D, Morelli D T 2011 Appl. Phys. Lett. 98 261911
[13] Zhang D, Yang J Y, Bai H C, Luo Y B, Wang B, Hou S H, Li Z L, Wang S F 2019 J. Mater. Chem. A 7 17648Google Scholar
[14] Wang B Y, Zheng S Q, Chen Y X, Wu Y, Li J, Ji Z, Mu Y N, Wei Z B, Liang Q, Liang J X 2020 J. Phys. Chem. C 124 10336Google Scholar
[15] Li J M, Li D, Song C J, Wang L, Xin H X, Zhang J, Qin X Y 2019 Intermetallics 109 68Google Scholar
[16] Zhou T, Wang L J, Zheng S Q, Hong M, Fang T, Bai P P, Chang S Y, Cui W L, Shi X L, Zhao H Z, Chen Z G 2018 Nano Energy 49 221Google Scholar
[17] Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2020 Nano Energy 71 104658Google Scholar
[18] Li D, Li R, Qin X Y, Zhang J, Song C J, Wang L, Xin H X 2013 CrystEngComm 15 7166Google Scholar
[19] Li D, Ming H W, Li J M, Jabar B, Xu W, Zhang J, Qin X Y 2020 ACS Appl. Mater. Interfaces 12 3886Google Scholar
[20] Xie D D, Zhang B, Zhang A J, Chen Y J, Yan Y C, Yang H Q, Wang G W, Wang G Y, Han H D, Han G, Lu X, Zhou X Y 2018 Nanoscale 10 14546Google Scholar
[21] Garcia G, Palacios P, Cabot A, Wahnon P 2018 Inorg. Chem. 57 7321Google Scholar
[22] Do D T, Mahanti D 2015 J. Alloys Compd. 625 346Google Scholar
[23] Skoug E J, Cain J D, Morelli D T 2010 Appl. Phys. Lett. 96 181905Google Scholar
[24] Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York: Springer) p37
[25] Min L, Ying P Z, Li X, Cui J L 2020 J. Phys. D: Appl. Phys. 53 075304Google Scholar
[26] Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101Google Scholar
[27] Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464Google Scholar
[28] Guymont M, Tomas A, Guittard M 1992 Philos. Mag. A 66 133Google Scholar
[29] Kim H, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar
[30] Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar
[31] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar
[32] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15Google Scholar
[33] Pulay P 1980 Chem. Phys. Lett. 73 393Google Scholar
[34] Zeier W G, Pei Y Z, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726Google Scholar
[35] Zhao L L, Lin N M, Han Z K, Li X, Wang H Y, Cui J L 2019 Adv. Electron. Mater 5 1900485Google Scholar
[36] Moreno E, Quintero M, Morocoima M, Quintero E, Grima P, Tovar R, Bocaranda P, Delgado G E, Contreras J E, Mora A E, Briceño J M, Godoy R A, Fernandez J L, Henao J A, Macías M A 2009 J. Alloys Compd. 486 212Google Scholar
[37] Cui J L, He T T, Han Z K, Liu X L, Du Z L 2018 Sci. Rep. 8 8202Google Scholar
[38] Do D T, Mahanti S D 2014 J. Phys. Chem. Solids 75 477Google Scholar
[39] Han M K, Hoang K, Kong H J, Pcionek R, Uher C, Paraskevopoulos K M, Mahanti S D, Kanatzidis M G 2008 Chem. Mater. 20 3512Google Scholar
[40] Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar
[41] Wiendlocha B, Vaney J B, Candolfi C, Dauscher A, Lenoir B, Tobola J 2018 Phys. Chem. Chem. Phys. 20 12948Google Scholar
[42] Li M, Luo Y, Cai G M, Li X, Li X Y, Han Z K, Lin X Y, Sarker D, Cui J L 2019 J. Mater. Chem. A 7 2360Google Scholar
[43] Zhang L, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Nano Lett. 18 1592Google Scholar
[44] Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar
[45] Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882Google Scholar
[46] Wu W, Li Y, Du Z, Meng Q, Sun Z, Ren W, Cui J 2013 Appl. Phys. Lett. 103 011905Google Scholar
[47] Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822Google Scholar
-
图 1 (a) (Cu3Sb0.9Sn0.1Se3.6S0.4)1–x(Ga2Te3)x (x = 0~0.0175)的粉末XRD图谱; (b) 晶格结构常数a和c; (c) 四方相晶体结构变形参数η; (d) 内部点阵结构扭曲参数ψ
Fig. 1. (a) X-ray diffraction patterns of the powders (Cu3Sb0.9Sn0.1Se3.6S0.4)1–x(Ga2Te3)x (x = 0~0.0175); (b) lattice constants a and c; (c) tetragonal deformation parameters η; (d) internal lattice distortion parameter ψ.
图 2 三种不同占位材料的计算形成能(Ef) (a) 本征Cu24Sb8Se32 (Ef = 0), 作为比较对象; (b) Sn和S共掺杂的Cu24Sb7Sn1Se28S4; (c) Ga占位在Sb位置(Cu24Sb7Ga1Se32); (d) Te 占位在Se位置(Cu24Sb8Se31Te1). Ef值均是相对于本征Cu24Sb8Se32的形成能
Fig. 2. Formation energies (Ef) of three solid solutions with different element occupations. (a) Pristine Cu24Sb8Se32 (Ef = 0) for comparidon; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga residing at Sb site (Cu24Sb7Ga1Se32); (d) Te residing at Se site (Cu24Sb8Se31Te1). The Ef values are their corresponding formation energies in comparison to that of the pristine structure.
图 3 各种材料的能带结构与态密度(DOS) (a) Cu24Sb8Se32; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga doped Cu24Sb7Ga1Se32; (d) Te doped Cu24Sb8Se31Te1 compounds
Fig. 3. Band structures and the density of the states (DOS) of different materials: (a) Pristine Cu24Sb8Se32; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga doped Cu24Sb7Ga1Se32; (d) Te doped Cu24Sb8Se31Te1 compounds.
图 5 (a) 在室温下(Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0~0.0175)材料的霍尔载流子浓度(nH)与Ga2Te3含量(x值)的关系; (b) 在室温下迁移率(μ)与Ga2Te3含量(x值)的关系
Fig. 5. (a) Hall carrier concentration (nH) as a function of Ga2Te3 content (x value) at room temperature (RT) for (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0~0.0175); (b) mobility (μ) as a function of Ga2Te3 content (x value) at RT.
图 6 (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0.01—0.015)材料的热电性能与温度的关系, 本征Cu3SbSe4的性能作为比较 (a) Seebeck 系数(α)与温度的关系; (b) 电导率(σ)与温度的关系; (c) 功率因子(PF) 与温度的关系; (d) 总热导率(κ)与温度的关系; (e) 晶格热导率(κL)与温度的关系; (f) 热电优值(ZT)与温度的关系
Fig. 6. TE performance of (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0.01–0.015) as a function of temperature, and the TE performance of pristine Cu3SbSe4 is provided for comparison: (a) Seebeck coefficients as a function of temperature; (b) electrical conductivities as a function of temperature; (c) power factor (PF) as a function of temperature; (d) total thermal conductivities (κ) as a function of temperature; (e) lattice part (κL) as a function of temperature; (f) TE figure of merit (ZT) as a function of temperature.
-
[1] Wei T, Wang H, Gibbs Z, Wu C, Snyder G J, Li J 2014 J. Mater. Chem. A 2 13527Google Scholar
[2] Zhang D, Yang J Y, Jiang Q H, Zhou Z W, Li X, Xin J W, Basit A, Ren Y Y, He X, Chu W J, Hou J D 2017 ACS Appl. Mater. Interfaces 9 28558Google Scholar
[3] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清 2017 物理学报 66 167201Google Scholar
Chen L N, Liu Y F, Zhang J Y, Yang J, Xing J J, Luo J, Zhang W Q 2017 Acta Phys. Sin. 66 167201Google Scholar
[4] Zhao D G, Wu D, Bo L 2017 Energies 10 1524Google Scholar
[5] Chang C H, Chen C L, Chiu W T, Chen Y Y 2017 Mater. Lett. 186 227Google Scholar
[6] Zhang D, Yang J Y, Jiang Q H, Fu L W, Xiao Y, Luo Y B, Zhou Z W 2016 Mater. Des. 98 150Google Scholar
[7] Li Y Y, Qin X Y, Li D, Li X Y, Liu Y F, Zhang J, Song C J, Xin H X 2015 RSC Adv. 5 31399Google Scholar
[8] Yang C Y, Huang F Q, Wu L M, Xu K 2011 J. Phys. D: Appl. Phys. 44 295404Google Scholar
[9] Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2019 Mater. Res. Bull. 113 38Google Scholar
[10] Prasad K S, Rao A 2019 J. Mater. Sci. - Mater. Electron. 30 16596Google Scholar
[11] Wang B Y, Wang Y L, Zheng S Q, Liu S C, Li J, Chang S Y, An T, Sun W L, Chen Y X 2019 J. Alloys Compd. 806 676Google Scholar
[12] Skoug E J, Cain J D, Morelli D T 2011 Appl. Phys. Lett. 98 261911
[13] Zhang D, Yang J Y, Bai H C, Luo Y B, Wang B, Hou S H, Li Z L, Wang S F 2019 J. Mater. Chem. A 7 17648Google Scholar
[14] Wang B Y, Zheng S Q, Chen Y X, Wu Y, Li J, Ji Z, Mu Y N, Wei Z B, Liang Q, Liang J X 2020 J. Phys. Chem. C 124 10336Google Scholar
[15] Li J M, Li D, Song C J, Wang L, Xin H X, Zhang J, Qin X Y 2019 Intermetallics 109 68Google Scholar
[16] Zhou T, Wang L J, Zheng S Q, Hong M, Fang T, Bai P P, Chang S Y, Cui W L, Shi X L, Zhao H Z, Chen Z G 2018 Nano Energy 49 221Google Scholar
[17] Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2020 Nano Energy 71 104658Google Scholar
[18] Li D, Li R, Qin X Y, Zhang J, Song C J, Wang L, Xin H X 2013 CrystEngComm 15 7166Google Scholar
[19] Li D, Ming H W, Li J M, Jabar B, Xu W, Zhang J, Qin X Y 2020 ACS Appl. Mater. Interfaces 12 3886Google Scholar
[20] Xie D D, Zhang B, Zhang A J, Chen Y J, Yan Y C, Yang H Q, Wang G W, Wang G Y, Han H D, Han G, Lu X, Zhou X Y 2018 Nanoscale 10 14546Google Scholar
[21] Garcia G, Palacios P, Cabot A, Wahnon P 2018 Inorg. Chem. 57 7321Google Scholar
[22] Do D T, Mahanti D 2015 J. Alloys Compd. 625 346Google Scholar
[23] Skoug E J, Cain J D, Morelli D T 2010 Appl. Phys. Lett. 96 181905Google Scholar
[24] Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York: Springer) p37
[25] Min L, Ying P Z, Li X, Cui J L 2020 J. Phys. D: Appl. Phys. 53 075304Google Scholar
[26] Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101Google Scholar
[27] Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464Google Scholar
[28] Guymont M, Tomas A, Guittard M 1992 Philos. Mag. A 66 133Google Scholar
[29] Kim H, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar
[30] Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar
[31] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar
[32] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15Google Scholar
[33] Pulay P 1980 Chem. Phys. Lett. 73 393Google Scholar
[34] Zeier W G, Pei Y Z, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726Google Scholar
[35] Zhao L L, Lin N M, Han Z K, Li X, Wang H Y, Cui J L 2019 Adv. Electron. Mater 5 1900485Google Scholar
[36] Moreno E, Quintero M, Morocoima M, Quintero E, Grima P, Tovar R, Bocaranda P, Delgado G E, Contreras J E, Mora A E, Briceño J M, Godoy R A, Fernandez J L, Henao J A, Macías M A 2009 J. Alloys Compd. 486 212Google Scholar
[37] Cui J L, He T T, Han Z K, Liu X L, Du Z L 2018 Sci. Rep. 8 8202Google Scholar
[38] Do D T, Mahanti S D 2014 J. Phys. Chem. Solids 75 477Google Scholar
[39] Han M K, Hoang K, Kong H J, Pcionek R, Uher C, Paraskevopoulos K M, Mahanti S D, Kanatzidis M G 2008 Chem. Mater. 20 3512Google Scholar
[40] Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar
[41] Wiendlocha B, Vaney J B, Candolfi C, Dauscher A, Lenoir B, Tobola J 2018 Phys. Chem. Chem. Phys. 20 12948Google Scholar
[42] Li M, Luo Y, Cai G M, Li X, Li X Y, Han Z K, Lin X Y, Sarker D, Cui J L 2019 J. Mater. Chem. A 7 2360Google Scholar
[43] Zhang L, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Nano Lett. 18 1592Google Scholar
[44] Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar
[45] Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882Google Scholar
[46] Wu W, Li Y, Du Z, Meng Q, Sun Z, Ren W, Cui J 2013 Appl. Phys. Lett. 103 011905Google Scholar
[47] Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822Google Scholar
计量
- 文章访问数: 5985
- PDF下载量: 55
- 被引次数: 0