搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非化学计量比AgSbTe2+x化合物制备及热电性能

杜保立 徐静静 鄢永高 唐新峰

引用本文:
Citation:

非化学计量比AgSbTe2+x化合物制备及热电性能

杜保立, 徐静静, 鄢永高, 唐新峰

Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds

Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao
PDF
导出引用
  • 采用高纯元素直接熔融、淬火并结合放电等离子烧结方法制备了非化学计量比AgSbTe2+x(x=0—0.05)系列样品,研究了不同Te含量在300—600 K范围内对样品热电性能的影响规律.结果表明:随着Te含量的增加,Ag+离子空位浓度增加,空穴浓度和电导率大幅度提高,Seebeck系数减小.热导率随Te过量程度的增加略有增加,但所有Te过量样品的晶格热导率均介于0.32—0.49 W/mK之间,低于化学计量比样品的值,接近理论最低晶格热导率.AgS
    Nonstoichiometric AgSbTe2+x (x=0—0.05) compounds have been prepared by combining melting-quench and spark plasma sintering. The effects of excessive Te on thermoelectric properties were investigated at 300 K to 600 K. Results indicated that the concentration of Ag+ ion vacancy, hole concentration and electrical conductivity increase remarkably with the increasing amount of Te, while the Seebeck coefficient decreases. In addition, the total thermal conductivity of the samples increases slightly as Te content increases. The lattice thermal conductivities of nonstoichiometric samples range from 0.32 to 0.49 W/mK, which are less than the value of the stoichiometric sample, and close to the theoretical minimum thermal conductivity. For AgSbTe2.01 (x=0.01), a maximum figure of merit ZT=1.41 was obtained at 562K. This value is 15% higher than that of the stoichiometric sample.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB607501)资助的课题.
    [1]

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597

    [2]

    Harman T C, Walsh M P, Laforge B E, Turner G W 2005 J. Electron Mater. 34 L19

    [3]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [4]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [5]

    Yang S H, Zhu T J, T Sun, J He, Zhang S N, Zhao X B 2008 Nanotechnology 19 245707

    [6]

    Li H, Tang X, Su X, Zhang Q 2008 Appl. Phys. Lett. 92 202114

    [7]

    Su X L, Tang X F, Li H, Deng S K 2008 Acta Phys. Sin. 57 6488 (in Chinese) [苏贤礼、唐新峰、李 涵、邓书康 2008 物理学报 57 6488]

    [8]

    Xiong C, Deng S K, Tang X F, Qi Q, Zhang Q J 2008 Acta Phys. Sin. 57 1190 (in Chinese) [熊 冲、邓书康、唐新峰、祁 琼 2008 物理学报 57 1190]

    [9]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [10]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [11]

    Hockings E F 1959 J. Phys. Chem. Solids. 10 341

    [12]

    Wernick J H, Benson K E 1957 J. Phys. Chem. Solids. 3 157

    [13]

    Rosi F D, Hockings E F, Lindenblad N E 1961 RCA Rev. 22 82

    [14]

    Wang H, Li J, Zhou M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [15]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M, Kanatzidis M G 2008 Phys .Rev. B 77 245203

    [16]

    Jovovic V, Heremans J 2009 J. Electron Mater. 38 1504

    [17]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [18]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [19]

    Wolfe R, Wernick J, Haszko S 1960 J. Appl. Phys. 31 1959

    [20]

    Sugar J D, Medlin D L 2009 J. Alloys Comp. 478 75

    [21]

    Armstrong R W, Jr J W F, Tiller W A 1960 J. Appl. Phys. 31 1954

    [22]

    Zhu G H, Lee H, Lan Y C, Wang X W, G Joshi, Wang D Z, Yang J, Vashaee D, Guilbert H, Pillitteri A, Dresselhaus M S, Chen G, Ren Z F 2009 Phys. Rev. Lett. 102 196803

    [23]

    Snyder G J, Toberer E S 2008 Nature Mater. 7 105

    [24]

    Pei Y, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [25]

    Hoang K, Mahanti S D, Salvador J R, Kanatzidis M G 2007 Phys. Rev. Lett. 99 156403

    [26]

    Su T, Jia X, Ma H A, Yu F R, Tian Y J, Zuo G H, Zheng Y J, Jiang Y P, Dong D, Deng L, Qin B, Zheng S Z 2009 J. Appl. Phys. 105 073713

    [27]

    Jovovic V, Heremans J P 2008 Phys. Rev. B 77 245204

    [28]

    David G C, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131

  • [1]

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597

    [2]

    Harman T C, Walsh M P, Laforge B E, Turner G W 2005 J. Electron Mater. 34 L19

    [3]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [4]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [5]

    Yang S H, Zhu T J, T Sun, J He, Zhang S N, Zhao X B 2008 Nanotechnology 19 245707

    [6]

    Li H, Tang X, Su X, Zhang Q 2008 Appl. Phys. Lett. 92 202114

    [7]

    Su X L, Tang X F, Li H, Deng S K 2008 Acta Phys. Sin. 57 6488 (in Chinese) [苏贤礼、唐新峰、李 涵、邓书康 2008 物理学报 57 6488]

    [8]

    Xiong C, Deng S K, Tang X F, Qi Q, Zhang Q J 2008 Acta Phys. Sin. 57 1190 (in Chinese) [熊 冲、邓书康、唐新峰、祁 琼 2008 物理学报 57 1190]

    [9]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [10]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [11]

    Hockings E F 1959 J. Phys. Chem. Solids. 10 341

    [12]

    Wernick J H, Benson K E 1957 J. Phys. Chem. Solids. 3 157

    [13]

    Rosi F D, Hockings E F, Lindenblad N E 1961 RCA Rev. 22 82

    [14]

    Wang H, Li J, Zhou M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [15]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M, Kanatzidis M G 2008 Phys .Rev. B 77 245203

    [16]

    Jovovic V, Heremans J 2009 J. Electron Mater. 38 1504

    [17]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [18]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [19]

    Wolfe R, Wernick J, Haszko S 1960 J. Appl. Phys. 31 1959

    [20]

    Sugar J D, Medlin D L 2009 J. Alloys Comp. 478 75

    [21]

    Armstrong R W, Jr J W F, Tiller W A 1960 J. Appl. Phys. 31 1954

    [22]

    Zhu G H, Lee H, Lan Y C, Wang X W, G Joshi, Wang D Z, Yang J, Vashaee D, Guilbert H, Pillitteri A, Dresselhaus M S, Chen G, Ren Z F 2009 Phys. Rev. Lett. 102 196803

    [23]

    Snyder G J, Toberer E S 2008 Nature Mater. 7 105

    [24]

    Pei Y, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [25]

    Hoang K, Mahanti S D, Salvador J R, Kanatzidis M G 2007 Phys. Rev. Lett. 99 156403

    [26]

    Su T, Jia X, Ma H A, Yu F R, Tian Y J, Zuo G H, Zheng Y J, Jiang Y P, Dong D, Deng L, Qin B, Zheng S Z 2009 J. Appl. Phys. 105 073713

    [27]

    Jovovic V, Heremans J P 2008 Phys. Rev. B 77 245204

    [28]

    David G C, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131

  • [1] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [2] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [3] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [4] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [5] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [6] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [7] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [8] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [9] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [10] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  8629
  • PDF下载量:  1071
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-19
  • 修回日期:  2010-05-05
  • 刊出日期:  2011-01-15

/

返回文章
返回