搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非化学计量比AgSbTe2+x化合物制备及热电性能

杜保立 徐静静 鄢永高 唐新峰

引用本文:
Citation:

非化学计量比AgSbTe2+x化合物制备及热电性能

杜保立, 徐静静, 鄢永高, 唐新峰

Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds

Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao
PDF
导出引用
  • 采用高纯元素直接熔融、淬火并结合放电等离子烧结方法制备了非化学计量比AgSbTe2+x(x=0—0.05)系列样品,研究了不同Te含量在300—600 K范围内对样品热电性能的影响规律.结果表明:随着Te含量的增加,Ag+离子空位浓度增加,空穴浓度和电导率大幅度提高,Seebeck系数减小.热导率随Te过量程度的增加略有增加,但所有Te过量样品的晶格热导率均介于0.32—0.49 W/mK之间,低于化学计量比样品的值,接近理论最低晶格热导率.AgS
    Nonstoichiometric AgSbTe2+x (x=0—0.05) compounds have been prepared by combining melting-quench and spark plasma sintering. The effects of excessive Te on thermoelectric properties were investigated at 300 K to 600 K. Results indicated that the concentration of Ag+ ion vacancy, hole concentration and electrical conductivity increase remarkably with the increasing amount of Te, while the Seebeck coefficient decreases. In addition, the total thermal conductivity of the samples increases slightly as Te content increases. The lattice thermal conductivities of nonstoichiometric samples range from 0.32 to 0.49 W/mK, which are less than the value of the stoichiometric sample, and close to the theoretical minimum thermal conductivity. For AgSbTe2.01 (x=0.01), a maximum figure of merit ZT=1.41 was obtained at 562K. This value is 15% higher than that of the stoichiometric sample.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB607501)资助的课题.
    [1]

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597

    [2]

    Harman T C, Walsh M P, Laforge B E, Turner G W 2005 J. Electron Mater. 34 L19

    [3]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [4]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [5]

    Yang S H, Zhu T J, T Sun, J He, Zhang S N, Zhao X B 2008 Nanotechnology 19 245707

    [6]

    Li H, Tang X, Su X, Zhang Q 2008 Appl. Phys. Lett. 92 202114

    [7]

    Su X L, Tang X F, Li H, Deng S K 2008 Acta Phys. Sin. 57 6488 (in Chinese) [苏贤礼、唐新峰、李 涵、邓书康 2008 物理学报 57 6488]

    [8]

    Xiong C, Deng S K, Tang X F, Qi Q, Zhang Q J 2008 Acta Phys. Sin. 57 1190 (in Chinese) [熊 冲、邓书康、唐新峰、祁 琼 2008 物理学报 57 1190]

    [9]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [10]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [11]

    Hockings E F 1959 J. Phys. Chem. Solids. 10 341

    [12]

    Wernick J H, Benson K E 1957 J. Phys. Chem. Solids. 3 157

    [13]

    Rosi F D, Hockings E F, Lindenblad N E 1961 RCA Rev. 22 82

    [14]

    Wang H, Li J, Zhou M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [15]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M, Kanatzidis M G 2008 Phys .Rev. B 77 245203

    [16]

    Jovovic V, Heremans J 2009 J. Electron Mater. 38 1504

    [17]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [18]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [19]

    Wolfe R, Wernick J, Haszko S 1960 J. Appl. Phys. 31 1959

    [20]

    Sugar J D, Medlin D L 2009 J. Alloys Comp. 478 75

    [21]

    Armstrong R W, Jr J W F, Tiller W A 1960 J. Appl. Phys. 31 1954

    [22]

    Zhu G H, Lee H, Lan Y C, Wang X W, G Joshi, Wang D Z, Yang J, Vashaee D, Guilbert H, Pillitteri A, Dresselhaus M S, Chen G, Ren Z F 2009 Phys. Rev. Lett. 102 196803

    [23]

    Snyder G J, Toberer E S 2008 Nature Mater. 7 105

    [24]

    Pei Y, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [25]

    Hoang K, Mahanti S D, Salvador J R, Kanatzidis M G 2007 Phys. Rev. Lett. 99 156403

    [26]

    Su T, Jia X, Ma H A, Yu F R, Tian Y J, Zuo G H, Zheng Y J, Jiang Y P, Dong D, Deng L, Qin B, Zheng S Z 2009 J. Appl. Phys. 105 073713

    [27]

    Jovovic V, Heremans J P 2008 Phys. Rev. B 77 245204

    [28]

    David G C, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131

  • [1]

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597

    [2]

    Harman T C, Walsh M P, Laforge B E, Turner G W 2005 J. Electron Mater. 34 L19

    [3]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [4]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [5]

    Yang S H, Zhu T J, T Sun, J He, Zhang S N, Zhao X B 2008 Nanotechnology 19 245707

    [6]

    Li H, Tang X, Su X, Zhang Q 2008 Appl. Phys. Lett. 92 202114

    [7]

    Su X L, Tang X F, Li H, Deng S K 2008 Acta Phys. Sin. 57 6488 (in Chinese) [苏贤礼、唐新峰、李 涵、邓书康 2008 物理学报 57 6488]

    [8]

    Xiong C, Deng S K, Tang X F, Qi Q, Zhang Q J 2008 Acta Phys. Sin. 57 1190 (in Chinese) [熊 冲、邓书康、唐新峰、祁 琼 2008 物理学报 57 1190]

    [9]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [10]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [11]

    Hockings E F 1959 J. Phys. Chem. Solids. 10 341

    [12]

    Wernick J H, Benson K E 1957 J. Phys. Chem. Solids. 3 157

    [13]

    Rosi F D, Hockings E F, Lindenblad N E 1961 RCA Rev. 22 82

    [14]

    Wang H, Li J, Zhou M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [15]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M, Kanatzidis M G 2008 Phys .Rev. B 77 245203

    [16]

    Jovovic V, Heremans J 2009 J. Electron Mater. 38 1504

    [17]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [18]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [19]

    Wolfe R, Wernick J, Haszko S 1960 J. Appl. Phys. 31 1959

    [20]

    Sugar J D, Medlin D L 2009 J. Alloys Comp. 478 75

    [21]

    Armstrong R W, Jr J W F, Tiller W A 1960 J. Appl. Phys. 31 1954

    [22]

    Zhu G H, Lee H, Lan Y C, Wang X W, G Joshi, Wang D Z, Yang J, Vashaee D, Guilbert H, Pillitteri A, Dresselhaus M S, Chen G, Ren Z F 2009 Phys. Rev. Lett. 102 196803

    [23]

    Snyder G J, Toberer E S 2008 Nature Mater. 7 105

    [24]

    Pei Y, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [25]

    Hoang K, Mahanti S D, Salvador J R, Kanatzidis M G 2007 Phys. Rev. Lett. 99 156403

    [26]

    Su T, Jia X, Ma H A, Yu F R, Tian Y J, Zuo G H, Zheng Y J, Jiang Y P, Dong D, Deng L, Qin B, Zheng S Z 2009 J. Appl. Phys. 105 073713

    [27]

    Jovovic V, Heremans J P 2008 Phys. Rev. B 77 245204

    [28]

    David G C, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131

  • [1] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [2] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221247
    [3] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [4] 李彩云, 何文科, 王东洋, 张潇, 赵立东. 通过插层Cu实现SnSe2的高效热电性能. 物理学报, 2021, 70(20): 208401. doi: 10.7498/aps.70.20211444
    [5] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [6] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [7] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [8] 王娇, 刘少辉, 周梦, 郝好山. 抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能. 物理学报, 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [9] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [10] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [11] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [12] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [13] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [14] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性. 物理学报, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [16] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [17] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [19] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [20] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
计量
  • 文章访问数:  6902
  • PDF下载量:  1054
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-19
  • 修回日期:  2010-05-05
  • 刊出日期:  2011-01-15

非化学计量比AgSbTe2+x化合物制备及热电性能

  • 1. (1)武汉理工大学材料复合新技术国家重点实验室,武汉 430070; (2)武汉理工大学材料复合新技术国家重点实验室,武汉 430070;河南理工大学物理化学学院,焦作 454000
    基金项目: 国家重点基础研究发展计划(批准号:2007CB607501)资助的课题.

摘要: 采用高纯元素直接熔融、淬火并结合放电等离子烧结方法制备了非化学计量比AgSbTe2+x(x=0—0.05)系列样品,研究了不同Te含量在300—600 K范围内对样品热电性能的影响规律.结果表明:随着Te含量的增加,Ag+离子空位浓度增加,空穴浓度和电导率大幅度提高,Seebeck系数减小.热导率随Te过量程度的增加略有增加,但所有Te过量样品的晶格热导率均介于0.32—0.49 W/mK之间,低于化学计量比样品的值,接近理论最低晶格热导率.AgS

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回