搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能

王娇 刘少辉 周梦 郝好山

引用本文:
Citation:

抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能

王娇, 刘少辉, 周梦, 郝好山

Effects of ascorbic acid post-treatment on thermoelectric properties of poly (3, 4-ethylenedioxythiophene) thin films by a vapor phase polymerization

Wang Jiao, Liu Shao-Hui, Zhou Meng, Hao Hao-Shan
PDF
HTML
导出引用
  • 为了获得高热电性能薄膜材料, 采用抗坏血酸(VC)作为还原剂对PEDOT-Tos-PPP薄膜进行后处理, 研究了不同浓度的VC水溶液对薄膜热电性能的影响, 并研究了后处理薄膜在空气中的稳定性. 结果表明, 经浓度为20%的VC水溶液处理后, 薄膜功率因子呈现最大值55.6 μW·m–1·K–2, 是处理之前(32.6 μW·m–1·K–2)的1.7倍, 室温下最大的ZT值为0.032. 经过VC处理后PEDOT薄膜的电导率和Seebeck系数在空气中表现出不稳定的特性, 主要是由于空气中的氧气导致薄膜表面中性态PEDOT进一步发生氧化引起的.
    Thermoelectric (TE) material is a kind of energy conversion material, which can be used for power generation and refrigeration. Until now, traditional inorganic TE materials have shown high dimensionless thermoelectric figure of merit (ZT) values. But their expensive raw material and high processing cost, heavy metal pollution and poor processability limit their broad applications. Poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers possess some excellent features, such as high electrical conductivity, low thermal conductivity, flexibility, low cost, abundance, and light weight. More and more attention has recently been paid to the TE properties of PEDOT polymers and PEDOT polymer based nanocomposites. Ascorbic acid (VC) is used as a reducing agent to tune the PEDOT-Tos-PPP film. The PEDOT-Tos-PPP films via VPP technique are treated with VC solutions with different concentrations. The TE properties of the films before and after being treated with VC at different concentrations are measured. The effect of concentration of VC aqueous solution on the thermoelectric properties and stabilities of the film are studied. The results indicate that the power factor of the film after being treated with 20% VC is 55.6 μW·m–1·K–2, which is 1.7 times as high as that of the pristine PEDOT-Tos-PPP film (34.4 μW·m–1·K–2). The maximum ZT value at room temperature is 0.032. After the VC treatment, the conductivity and Seebeck coefficient of the PEDOT film show unstable characteristics in the air, which is mainly due to the further oxidation of the neutral state on the PEDOT film surface in the air.
      通信作者: 王娇, wangjiao_1203@163.com
      Corresponding author: Wang Jiao, wangjiao_1203@163.com
    [1]

    Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X 2011 Nat. Mater. 10 429Google Scholar

    [2]

    Kim G, Shao L, Zhang K, Pipe K P 2013 Nat. Mater. 12 719Google Scholar

    [3]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 物理学报 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [4]

    许易, 许小言, 张薇, 欧阳滔, 唐超 2019 物理学报 68 247202Google Scholar

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar

    [5]

    李小亚, 陈炎, 郝峰, 包晔峰, 陈立东 2017 中国材料进展 36 270

    Li X Y, Chen Y, Hao F, Bao Y F, Chen L D 2017 Materials China 36 270

    [6]

    Wang Y, Yang L, Shi X L, Shi X, Chen L, Dargusch M S, Zou J, Chen Z G 2019 Adv. Mater. 31 1807916Google Scholar

    [7]

    Culebras M, Gómez C M, Cantarero A 2014 J. Mater. Chem. A 2 10109Google Scholar

    [8]

    Lee S H, Park H, Kim S, Son W, Cheong I W, Kim J H 2014 J. Mater. Chem. A 2 7288Google Scholar

    [9]

    Park H, Lee S H, Kim F S, Choi H H, Cheong I W, Kim J H 2014 J. Mater. Chem. A 2 6532Google Scholar

    [10]

    Bubnova O, Berggren M, Crispin X 2012 J. Am. Chem. Soc. 134 16456Google Scholar

    [11]

    Park T, Park C, Kim B, Shin H, Kim E 2013 Energy Environ. Sci. 6 788Google Scholar

    [12]

    Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X 2010 Chem. Mater. 22 2213Google Scholar

    [13]

    Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M M, Zozoulenko I, Fahlman M, Murphy P J, Berggren M, Crispin X 2014 Nat. Mater. 13 190Google Scholar

    [14]

    Mott N F, Davis E A 1979

    [15]

    Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J, Li L F 2008 Chin. Phys. Lett. 25 2202Google Scholar

    [16]

    Scholdt M, Do H, Lang J, Gall A, Colsmann A, Lemmer U, Koenig J D, Winkler M, Boettner H 2010 J. Electron. Mater. 39 1589Google Scholar

    [17]

    Kim D, Kim Y, Choi K, Grunlan J C, Yu C 2010 ACS Nano 4 513Google Scholar

    [18]

    Yu C, Choi K, Yin L, Grunlan J C 2011 ACS Nano 5 7885Google Scholar

    [19]

    Xia Y, Sun K, Ouyang J 2012 Adv. Mater. 24 2436Google Scholar

    [20]

    Im S G, Gleason K K 2007 Macromolecules 40 6552Google Scholar

    [21]

    Bubnova O, Crispin X 2012 Energy Environ. Sci. 5 9345Google Scholar

    [22]

    Łapkowski M, Proń A 2000 Synth. Met. 110 79Google Scholar

    [23]

    Crispin X, Marciniak S, Osikowicz W, Zotti G, Gon A W D v d, Louwet F, Fahlman M, Groenendaal L, Schryver F D, Salaneck W R 2003 J. Polym. Sci., Part B: Polym. Phys. 41 2561Google Scholar

    [24]

    Lindell L, Burquel A, Jakobsson F L, Lemaur V, Berggren M, Lazzaroni R, Cornil J, Salaneck W R, Crispin X 2006 Chem. Mater. 18 4246Google Scholar

    [25]

    Spanninga S A, Martin D C, Chen Z 2009 J. Phys. Chem. C 113 5585

    [26]

    Wang T, Qi Y, Xu J, Hu X, Chen P 2005 Appl. Surf. Sci. 250 188Google Scholar

    [27]

    Xing K, Fahlman M, Chen X, Inganäs O, Salaneck W 1997 Synth. Met. 89 161Google Scholar

    [28]

    Garreau S, Louarn G, Buisson J P, Froyer G, Lefrant S 1999 Macromolecules 32 6807Google Scholar

    [29]

    Silva R A, Goulart Silva G, Pimenta M A 2001 J. Raman Spectrosc. 32 369Google Scholar

  • 图 1  PEDOT-Tos-PPP薄膜经过不同浓度的VC水溶液后处理室温下(295 K)的热电性能

    Fig. 1.  Thermoelectric performance of PEDOT-Tos-PPP films after post-treatment with different concentrations of VC aqueous solution at room temperature (295 K).

    图 2  PEDOT-Tos-PPP薄膜经过20% VC水溶液处理后在空气中的稳定性

    Fig. 2.  Thermoelectric stability of PEDOT-Tos-PPP film in air after treatment with 20% VC aqueous solution.

    图 4  未处理、经过VC后处理的新鲜样品及后处理样品在空气中放置一段时间后的UV-Vis-NIR光谱图

    Fig. 4.  UV-Vis-NIR spectra of untreated, VC post-treated fresh samples and post-treated samples in air for a period of time.

    图 5  VPP法制备的PEDOT-Tos-PPP薄膜、经过VC后处理的新鲜样品及后处理样品在空气中放置一段时间后的XPS分析 (a) Survey谱; (b) S2p分谱; (c) C1s分谱; (d) O1s分谱

    Fig. 5.  XPS of PEDOT-Tos-PPP film prepared by the VPP method, fresh samples after VC post-treatment, and post-treated samples in the air for a period of time: (a) Survey spectrum; (b) S2p spectrum; (c) C1s spectrum; (d) O1s spectrum.

    图 3  未处理和经过20% VC水溶液处理后放置空气中2 d后(a)电导率、(b) Seebeck系数和(c)功率因子随温度的变化, 图(a)中的插图为ln(σ)-T–1/3

    Fig. 3.  The relationship between (a) conductivity, (b) Seebeck coefficient, and (c) power factor with temperature in untreated and 20% VC aqueous solution in air for 2 d. The inset in Fig. (a) is the relations between ln(σ) and T–1/3.

    图 6  未处理、经过不同浓度的VC水溶液处理后PEDOT-Tos-PPP薄膜的Raman光谱图

    Fig. 6.  Raman of untreated PEDOT-Tos-PPP films and films after treatment with different concentrations of VC aqueous solution.

    图 7  (a) VPP法制备的PEDOT-Tos-PPP薄膜、(b) 经过VC后处理的新鲜样品及(c)后处理的样品在空气中放置一段时间后的FESEM照片

    Fig. 7.  FESEM of (a) PEDOT-Tos-PPP film prepared by VPP method, (b) fresh sample after VC post-treatment, and (c) post-treated sample in the air for a period of time.

    表 1  不同方法改善PEDOT热电性能的对比

    Table 1.  Comparison of different methods to improve PEDOT thermoelectric performance.

    材料类型热电优值ZT参考
    文献
    二甲基亚砜和乙二醇掺杂PEDOT:PSS薄膜0.0012[15]
    二甲基亚砜掺杂PEDOT:PSS薄膜0.0090[16]
    PEDOT:PSS/碳纳米管复合材料0.0200[17]
    碳纳米管/PEDOT:PSS复合薄膜0.0200[18]
    抗坏血酸后处理PEODT薄膜0.0320本文
    下载: 导出CSV
  • [1]

    Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X 2011 Nat. Mater. 10 429Google Scholar

    [2]

    Kim G, Shao L, Zhang K, Pipe K P 2013 Nat. Mater. 12 719Google Scholar

    [3]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 物理学报 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [4]

    许易, 许小言, 张薇, 欧阳滔, 唐超 2019 物理学报 68 247202Google Scholar

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar

    [5]

    李小亚, 陈炎, 郝峰, 包晔峰, 陈立东 2017 中国材料进展 36 270

    Li X Y, Chen Y, Hao F, Bao Y F, Chen L D 2017 Materials China 36 270

    [6]

    Wang Y, Yang L, Shi X L, Shi X, Chen L, Dargusch M S, Zou J, Chen Z G 2019 Adv. Mater. 31 1807916Google Scholar

    [7]

    Culebras M, Gómez C M, Cantarero A 2014 J. Mater. Chem. A 2 10109Google Scholar

    [8]

    Lee S H, Park H, Kim S, Son W, Cheong I W, Kim J H 2014 J. Mater. Chem. A 2 7288Google Scholar

    [9]

    Park H, Lee S H, Kim F S, Choi H H, Cheong I W, Kim J H 2014 J. Mater. Chem. A 2 6532Google Scholar

    [10]

    Bubnova O, Berggren M, Crispin X 2012 J. Am. Chem. Soc. 134 16456Google Scholar

    [11]

    Park T, Park C, Kim B, Shin H, Kim E 2013 Energy Environ. Sci. 6 788Google Scholar

    [12]

    Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X 2010 Chem. Mater. 22 2213Google Scholar

    [13]

    Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M M, Zozoulenko I, Fahlman M, Murphy P J, Berggren M, Crispin X 2014 Nat. Mater. 13 190Google Scholar

    [14]

    Mott N F, Davis E A 1979

    [15]

    Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J, Li L F 2008 Chin. Phys. Lett. 25 2202Google Scholar

    [16]

    Scholdt M, Do H, Lang J, Gall A, Colsmann A, Lemmer U, Koenig J D, Winkler M, Boettner H 2010 J. Electron. Mater. 39 1589Google Scholar

    [17]

    Kim D, Kim Y, Choi K, Grunlan J C, Yu C 2010 ACS Nano 4 513Google Scholar

    [18]

    Yu C, Choi K, Yin L, Grunlan J C 2011 ACS Nano 5 7885Google Scholar

    [19]

    Xia Y, Sun K, Ouyang J 2012 Adv. Mater. 24 2436Google Scholar

    [20]

    Im S G, Gleason K K 2007 Macromolecules 40 6552Google Scholar

    [21]

    Bubnova O, Crispin X 2012 Energy Environ. Sci. 5 9345Google Scholar

    [22]

    Łapkowski M, Proń A 2000 Synth. Met. 110 79Google Scholar

    [23]

    Crispin X, Marciniak S, Osikowicz W, Zotti G, Gon A W D v d, Louwet F, Fahlman M, Groenendaal L, Schryver F D, Salaneck W R 2003 J. Polym. Sci., Part B: Polym. Phys. 41 2561Google Scholar

    [24]

    Lindell L, Burquel A, Jakobsson F L, Lemaur V, Berggren M, Lazzaroni R, Cornil J, Salaneck W R, Crispin X 2006 Chem. Mater. 18 4246Google Scholar

    [25]

    Spanninga S A, Martin D C, Chen Z 2009 J. Phys. Chem. C 113 5585

    [26]

    Wang T, Qi Y, Xu J, Hu X, Chen P 2005 Appl. Surf. Sci. 250 188Google Scholar

    [27]

    Xing K, Fahlman M, Chen X, Inganäs O, Salaneck W 1997 Synth. Met. 89 161Google Scholar

    [28]

    Garreau S, Louarn G, Buisson J P, Froyer G, Lefrant S 1999 Macromolecules 32 6807Google Scholar

    [29]

    Silva R A, Goulart Silva G, Pimenta M A 2001 J. Raman Spectrosc. 32 369Google Scholar

  • [1] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能. 物理学报, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [2] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能. 物理学报, 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [3] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [4] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [5] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [6] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [8] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清. Ga掺杂对Cu3SbSe4热电性能的影响. 物理学报, 2017, 66(16): 167201. doi: 10.7498/aps.66.167201
    [9] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [10] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [11] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [12] 薛将, 潘风明, 裴煜. 钽掺杂二氧化钛薄膜的光电性能研究. 物理学报, 2013, 62(15): 158103. doi: 10.7498/aps.62.158103
    [13] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响. 物理学报, 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [14] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [15] 王作成, 李涵, 苏贤礼, 唐新峰. In0.3Co4Sb12-xSex 方钴矿热电材料的制备和热电性能. 物理学报, 2011, 60(2): 027202. doi: 10.7498/aps.60.027202
    [16] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [17] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [18] 余柏林, 祁 琼, 唐新峰, 张清杰. 晶粒尺寸对CoSb3化合物热电性能的影响. 物理学报, 2005, 54(12): 5763-5768. doi: 10.7498/aps.54.5763
    [19] 李 涵, 唐新峰, 刘桃香, 宋 晨, 张清杰. Ca和Ce双原子复合填充p型CamCenFexCo4-xSb12化合物的合成及热电性能. 物理学报, 2005, 54(11): 5481-5486. doi: 10.7498/aps.54.5481
    [20] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. n型BayNixCo4-xSb12化合物的热电性能. 物理学报, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
计量
  • 文章访问数:  8249
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-22
  • 修回日期:  2020-04-25
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回