搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响

张彬 王伟丽 牛巧利 邹贤劭 董军 章勇

引用本文:
Citation:

H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响

张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇

Effects of annealing in H2 atomsphere on optoelectronical properties of Nb-doped TiO2 thin films

Zhang Bin, Wang Wei-Li, Niu Qiao-Li, Zou Xian-Shao, Dong Jun, Zhang Yong
PDF
导出引用
  • 采用电子束沉积方法,以钛酸锶(SrTiO3)为衬底制备铌(Nb)掺杂TiO2薄膜并研究后续H2气氛退火处理对其薄膜样品光电性能的影响. 结果发现H2气氛热退火处理能有效改善Nb掺杂TiO2薄膜的导电率,最佳电阻率达到5.46×10-3 Ω·cm,在可见光范围内的透光率为60%–80%. 导电性能的改善与H2气氛退火处理后多晶薄膜的晶粒尺寸变大和大量的氧空位形成及H原子掺杂有关.
    Niobium-doped TiO2 thin films are deposited on strontium titanate substrates by E-beam evaporation deposition. Effects of post-annealing in hydrogen atmosphere on their optoelectrical properties are studied. The results show that the annealing in hydrogen atmosphere can enhance their conductivity values efficiently. The corresponding optium resistivity reaches 5.46×10-3 Ω·cm, and the transmittance values of the thin films are 60%–80%. The improvement in the conductive performance is attributed to the increase of the grain size of polycrystalline thin film, the formation of a lot of oxygen vacancies and H-doping caused by annealing in hydrogen atmosphere.
    • 基金项目: 广东省科技攻关项目(批准号:2012B010200032)、国家自然科学基金(批准号:U1174001)、广东省自然科学基金(批准号:S2011010003400)、广东省省部产学研项目(批准号:2011A091000033)和广州市珠江科技新星项目(批准号:2012J2200023)资助的课题.
    • Funds: Project supported by the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2012CB010200032), the National Natural Science Foundation of China (Grant No. U1174001), the Nature Science Foundation of Guangdong Province, China (Grant No. S2011010003400), the Production and Research Project of Guangdong Province and Ministry of Education, China (Grant No. 2011A091000033), and the New Star of Science and Technology Project of Zhujiang, Guangzhou Province, China (Grant No. 2012J2200023).
    [1]

    Ginley D S, Bright C 2000 Mater. Res. Bull. 25 15

    [2]

    Hamberg I, Granqvist C G 1986 J. Appl. Phys. 60 R123

    [3]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [4]

    Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063

    [5]

    Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707

    [6]

    Taylor S R, McLennan S H 1986 The Continental Crust: Its Composition and Evolution (Oxford: Blackwell) p312

    [7]

    Hoang N L H, Yamada N, Hitosugi T, Kasai J, Nakao S, Shimada T, Hasegawa T 2008 Appl. Phys. Express 1 115001

    [8]

    Sato Y, Akizuki H, Kamiyama T, Shigesato Y 2008 Thin Solid Films 516 5758

    [9]

    Kasai J, Hitosugi T, Moriyama M, Goshonoo K, Hoang N L H, Nakao S, Yamada N, Hasegawa T 2010 J. Appl. Phys. 107 053110

    [10]

    Luo X D, Di G Q 2012 Acta Phys. Sin. 61 206803 (in Chinese) [罗晓东, 狄国庆 2012 物理学报 61 206803]

    [11]

    Zhang R S, Liu Y, Teng F, Song C L, Han G R 2012 Acta Phys. Sin. 61 017101 (in Chinese) [章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣 2012 物理学报 61 017101]

    [12]

    Xue J, Pan F M, Pei Y 2013 Acta Phys. Sin. 62 158103 (in Chinese) [薛将, 潘风明, 裴煜 2013 物理学报 62 158103]

    [13]

    Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103

    [14]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [15]

    Park J H, Kang S J, Na S, Lee H H, Kim S W, Hosono H, Kim H K 2011 Sol. Energy Mater. Sol. Cells 95 2178

    [16]

    Gillispie M A, van Hest M F A M, Dabney M S, Perkins J D, Ginley D S 2007 J. Appl. Phys. 101 033125

    [17]

    Seo S J, Jeon J H, Hwang Y H, Bae B S 2011 Appl. Phys. Lett. 99 152102

    [18]

    Cao L, Zhu L P, Ye Z Z 2013 J. Phys. Chem. Solids 74 668

    [19]

    Park J H, Choi Y Y, Kim H K, Lee H H, Na S I 2010 J. Appl. Phys. 108 083509

    [20]

    Park S M, Ikegami T, Ebihara K, Shin P K 2006 Appl. Surf. Sci. 253 1522

    [21]

    Panayotov D A, Yates Jr J T 2007 Chem. Phys. Lett. 436 204

    [22]

    Valentin C D, Pacchioni G 2009 J. Phys. Chem. C 113 20543

  • [1]

    Ginley D S, Bright C 2000 Mater. Res. Bull. 25 15

    [2]

    Hamberg I, Granqvist C G 1986 J. Appl. Phys. 60 R123

    [3]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [4]

    Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063

    [5]

    Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707

    [6]

    Taylor S R, McLennan S H 1986 The Continental Crust: Its Composition and Evolution (Oxford: Blackwell) p312

    [7]

    Hoang N L H, Yamada N, Hitosugi T, Kasai J, Nakao S, Shimada T, Hasegawa T 2008 Appl. Phys. Express 1 115001

    [8]

    Sato Y, Akizuki H, Kamiyama T, Shigesato Y 2008 Thin Solid Films 516 5758

    [9]

    Kasai J, Hitosugi T, Moriyama M, Goshonoo K, Hoang N L H, Nakao S, Yamada N, Hasegawa T 2010 J. Appl. Phys. 107 053110

    [10]

    Luo X D, Di G Q 2012 Acta Phys. Sin. 61 206803 (in Chinese) [罗晓东, 狄国庆 2012 物理学报 61 206803]

    [11]

    Zhang R S, Liu Y, Teng F, Song C L, Han G R 2012 Acta Phys. Sin. 61 017101 (in Chinese) [章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣 2012 物理学报 61 017101]

    [12]

    Xue J, Pan F M, Pei Y 2013 Acta Phys. Sin. 62 158103 (in Chinese) [薛将, 潘风明, 裴煜 2013 物理学报 62 158103]

    [13]

    Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103

    [14]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [15]

    Park J H, Kang S J, Na S, Lee H H, Kim S W, Hosono H, Kim H K 2011 Sol. Energy Mater. Sol. Cells 95 2178

    [16]

    Gillispie M A, van Hest M F A M, Dabney M S, Perkins J D, Ginley D S 2007 J. Appl. Phys. 101 033125

    [17]

    Seo S J, Jeon J H, Hwang Y H, Bae B S 2011 Appl. Phys. Lett. 99 152102

    [18]

    Cao L, Zhu L P, Ye Z Z 2013 J. Phys. Chem. Solids 74 668

    [19]

    Park J H, Choi Y Y, Kim H K, Lee H H, Na S I 2010 J. Appl. Phys. 108 083509

    [20]

    Park S M, Ikegami T, Ebihara K, Shin P K 2006 Appl. Surf. Sci. 253 1522

    [21]

    Panayotov D A, Yates Jr J T 2007 Chem. Phys. Lett. 436 204

    [22]

    Valentin C D, Pacchioni G 2009 J. Phys. Chem. C 113 20543

  • [1] 刘保剑, 段微波, 李大琪, 余德明, 陈刚, 王天洪, 刘定权. 退火温度对Ta2O5/SiO2多层反射膜结构和应力特性的影响. 物理学报, 2019, 68(11): 114208. doi: 10.7498/aps.68.20182247
    [2] 王一, 杨晨, 郭祥, 王继红, 刘雪飞, 魏节敏, 郎啟智, 罗子江, 丁召. Al0.17Ga0.83As/GaAs(001)薄膜退火过程的热力学分析. 物理学报, 2018, 67(8): 080503. doi: 10.7498/aps.67.20172718
    [3] 姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙. 电子辐射环境中NPN输入双极运算放大器的辐射效应和退火特性. 物理学报, 2015, 64(13): 136103. doi: 10.7498/aps.64.136103
    [4] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [5] 徐大庆, 张义门, 娄永乐, 童军. 热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响. 物理学报, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [6] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [7] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [8] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [9] 唐正霞, 沈鸿烈, 江丰, 方茹, 鲁林峰, 黄海宾, 蔡红. 变温退火制备铝诱导大晶粒多晶硅薄膜的机理研究. 物理学报, 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [10] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [11] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [12] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 退火温度对低温生长MgxZn1-xO薄膜光学性质的影响. 物理学报, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [13] 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [14] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [15] 尚淑珍, 邵建达, 沈 健, 易 葵, 范正修. 退火对电子束热蒸发193nm Al2O3/MgF2反射膜性能的影响. 物理学报, 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [16] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究. 物理学报, 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [17] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [18] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响. 物理学报, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [19] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  2882
  • PDF下载量:  1074
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-04
  • 修回日期:  2013-11-23
  • 刊出日期:  2014-03-05

H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响

  • 1. 华南师范大学, 光电子材料与技术研究所, 广州 510631
    基金项目: 广东省科技攻关项目(批准号:2012B010200032)、国家自然科学基金(批准号:U1174001)、广东省自然科学基金(批准号:S2011010003400)、广东省省部产学研项目(批准号:2011A091000033)和广州市珠江科技新星项目(批准号:2012J2200023)资助的课题.

摘要: 采用电子束沉积方法,以钛酸锶(SrTiO3)为衬底制备铌(Nb)掺杂TiO2薄膜并研究后续H2气氛退火处理对其薄膜样品光电性能的影响. 结果发现H2气氛热退火处理能有效改善Nb掺杂TiO2薄膜的导电率,最佳电阻率达到5.46×10-3 Ω·cm,在可见光范围内的透光率为60%–80%. 导电性能的改善与H2气氛退火处理后多晶薄膜的晶粒尺寸变大和大量的氧空位形成及H原子掺杂有关.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回