搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环氧化/退火制备GeOI薄膜材料及其性质研究

胡美娇 李成 徐剑芳 赖虹凯 陈松岩

引用本文:
Citation:

循环氧化/退火制备GeOI薄膜材料及其性质研究

胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩

Formation and properties of GeOI prepared by cyclic thermal oxidation and annealing processes

Hu Mei-Jiao, Li Cheng, Xu Jian-Fang, Lai Hong-Kai, Chen Song-Yan
PDF
导出引用
  • 采用超高真空化学气相淀积系统在SOI(绝缘体上硅)衬底上生长了Si0.82Ge0.18外延层,通过循环氧化/退火工艺,制备出Ge组分从0.24到1的绝缘体上锗硅(SGOI)材料.采用高分辨透射电镜、拉曼散射光谱和光致发光谱表征了其结构及光学性质,对氧化过程中SiGe层中的Ge组分和应变的演变进行了分析.最后制备出11 nm厚的绝缘体上Ge材料(GeOI),具有完整的晶格结构和平整的界面.室温下观测到绝缘体上Ge直接带跃迁光致发光,发光峰值位于1540 nm,发光
    Si0.82Ge0.18/SOI prepared by epitaxial growth of SiGe layer on SOI wafer in the ultra-high vacuum chemical vapor deposition is used to fabricate the SiGe on insulator (SGOI) substrate (0.24≤xGe≤1) by the cyclic oxidation and annealing processes. The structure and the optical properties of the SGOI with various Ge content are studied by employing HRTEM, Raman spectroscopy, and photoluminescence (PL) spectroscopy. The variations of Ge component and strain in the oxidation process are analyzed. High crystal quality Ge on insulator (GeOI), with a thickness of 11 nm, is obtained with a flat Ge/SiO2 interface. The direct band transition photoluminescence of the GeOI is observed at room temperature. The photoluminescence peak from GeOI is located at 1540 nm, and the PL intensity increases linearly with exciting power increasing. It is indicated that the formed GOI material has a high crystallization quality and is suitable for the applications in Ge optoelectronic and microelectronic devices.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB613404)和国家自然科学基金(批准号:61036003和60837001)资助的课题.
    [1]

    Tracy C J, Fejes P, Theodore N D, Maniar P, Johnson E, Lamm A J, Paler A M, Malik I J, Ong P 2004 J. Electron. Mater. 33 886

    [2]

    Celler G K, Cristoloveanu S 2003 J. Appl. Phys. 93 4955

    [3]

    Lee M L, Fitzgerald E A 2003 Appl. Phys. Lett. 83 4202

    [4]

    Mooney P M, Chu J O 2000 Annu. Rev. Mater. Sci. 30 335

    [5]

    Ma L, Gao Y 2009 Acta Phys.Sin. 58 529 (in Chinese)[马 丽、高 勇 2009 物理学报 58 529]

    [6]

    Chui C O, Ramanathan S, Triplett B B, McIntyre P C, Saraswat K C 2002 IEEE Electron Device Lett. 23 473

    [7]

    Bai W P, Lu N, Liu J, Ramirez A, Kwong D L, Wristers D, Ritenour A, Lee L, Antoniadis D 2003 Symposium on VLSI Technology:Digest of Technical Papers Kyoto, Japan, June 10—12, 2003 p121

    [8]

    Shang H, Okorn-Schimdt H, Ott J, Kozlowski P, Steen S, Jones E C, Wong H S P, Hanesch W 2003 IEEE Electron Device Lett. 24 242

    [9]

    Liu Y C, Deal M D, Plummer J D 2004 Appl. Phys. Lett. 84 2563

    [10]

    Gao X G, Liu C, Li J P, Zeng Y P, Li J M 2005 Microlectronics 35 76 (in chinese) [高兴国、刘 超、李建平、曾一平、李晋闽 2005 微电子学35 76]

    [11]

    Tang Y S, Zhang J P, Hemment P L F, Sealy B J 1990 J. Appl. Phys. 67 7151

    [12]

    Sugiyama N, Mizuno T, Suzuki M, Takagi S 2001 Jpn. J. Appl. Phys. 40 2875

    [13]

    Cheng Z, Taraschi G, Currie M T, Leitz C W, Lee M L, Pitera A, Langdo T A, Hoyt J L, Antoniadis D A, Fitzgerald E A 2001 J. Electron. Mater. 30 37

    [14]

    Deguet C, Sanchez L, Akatsu T, Allibert F, Dechamp J, Madeira F, Mazen F, Tauzin A, Loup V, Richtarch C, Mercier D, Signamarcheix T, Letertre F, Depuydt B, Kernevez N 2006 Electron. Lett. 42 415

    [15]

    Tezuka T, Sugiyama N, Takagi S 2001 Appl. Phys. Lett. 79 1798

    [16]

    Di Z F, Zhang M, Liu W L, Luo S H, Song Z T, Lin C L, Huang A P, Chu P K 2005 J. Vac. Sci. Technol. B 23 1637

    [17]

    Zhang Y, Cai K H, Li C, Chen S Y, Lai H K, Kang J Y 2009 J. Electrochem. Soc. 156 115

    [18]

    Eugéne J, LeGoues F K, Kesan V P, Lyer S S, d'Heurle F M 1991 Appl. Phys. Lett. 59 78

    [19]

    Tezuka T, Sugiyama N, Mizuno T, Suzuki M, Takagi S 2001 Jpn. J. Appl. Phys. 140 2866

    [20]

    Shimura T, Shimizu M, Horiuchi S, Watanabe H, Yasutake K, Umeno M 2006 Appl. Phys. Lett. 89 111923

    [21]

    Di Z F, Zhang M, Liu W L, Zhu M, Lin C L, Chu P K 2005 Mater. Sci. Eng. B 124-125 153

    [22]

    Groenen J, Carles R, Christiansen S, Albrecht M, Dorsch W, Strunk H P, Wawra H, Wagner G 1997 Appl. Phys. Lett. 71 3856

    [23]

    Sheng H, Jiang Z M, Lu F, Huang D M 2004 Silicon-Germanium Superlattices and Low Dimensional Quantum Structures (Shanghai: Shanghai Science and Technology Press) pp54—55 (in Chinese) [盛 箎、蒋最敏、陆昉、黄大鸣 2004 硅锗超晶格及低维量子结构 (上海:上海科学技术出版社) 第54—55页]

    [24]

    Li C, Chen Y H, Zhou Z W, Lai H K, Chen S Y 2009 Appl. Phys. Lett. 95 251102

  • [1]

    Tracy C J, Fejes P, Theodore N D, Maniar P, Johnson E, Lamm A J, Paler A M, Malik I J, Ong P 2004 J. Electron. Mater. 33 886

    [2]

    Celler G K, Cristoloveanu S 2003 J. Appl. Phys. 93 4955

    [3]

    Lee M L, Fitzgerald E A 2003 Appl. Phys. Lett. 83 4202

    [4]

    Mooney P M, Chu J O 2000 Annu. Rev. Mater. Sci. 30 335

    [5]

    Ma L, Gao Y 2009 Acta Phys.Sin. 58 529 (in Chinese)[马 丽、高 勇 2009 物理学报 58 529]

    [6]

    Chui C O, Ramanathan S, Triplett B B, McIntyre P C, Saraswat K C 2002 IEEE Electron Device Lett. 23 473

    [7]

    Bai W P, Lu N, Liu J, Ramirez A, Kwong D L, Wristers D, Ritenour A, Lee L, Antoniadis D 2003 Symposium on VLSI Technology:Digest of Technical Papers Kyoto, Japan, June 10—12, 2003 p121

    [8]

    Shang H, Okorn-Schimdt H, Ott J, Kozlowski P, Steen S, Jones E C, Wong H S P, Hanesch W 2003 IEEE Electron Device Lett. 24 242

    [9]

    Liu Y C, Deal M D, Plummer J D 2004 Appl. Phys. Lett. 84 2563

    [10]

    Gao X G, Liu C, Li J P, Zeng Y P, Li J M 2005 Microlectronics 35 76 (in chinese) [高兴国、刘 超、李建平、曾一平、李晋闽 2005 微电子学35 76]

    [11]

    Tang Y S, Zhang J P, Hemment P L F, Sealy B J 1990 J. Appl. Phys. 67 7151

    [12]

    Sugiyama N, Mizuno T, Suzuki M, Takagi S 2001 Jpn. J. Appl. Phys. 40 2875

    [13]

    Cheng Z, Taraschi G, Currie M T, Leitz C W, Lee M L, Pitera A, Langdo T A, Hoyt J L, Antoniadis D A, Fitzgerald E A 2001 J. Electron. Mater. 30 37

    [14]

    Deguet C, Sanchez L, Akatsu T, Allibert F, Dechamp J, Madeira F, Mazen F, Tauzin A, Loup V, Richtarch C, Mercier D, Signamarcheix T, Letertre F, Depuydt B, Kernevez N 2006 Electron. Lett. 42 415

    [15]

    Tezuka T, Sugiyama N, Takagi S 2001 Appl. Phys. Lett. 79 1798

    [16]

    Di Z F, Zhang M, Liu W L, Luo S H, Song Z T, Lin C L, Huang A P, Chu P K 2005 J. Vac. Sci. Technol. B 23 1637

    [17]

    Zhang Y, Cai K H, Li C, Chen S Y, Lai H K, Kang J Y 2009 J. Electrochem. Soc. 156 115

    [18]

    Eugéne J, LeGoues F K, Kesan V P, Lyer S S, d'Heurle F M 1991 Appl. Phys. Lett. 59 78

    [19]

    Tezuka T, Sugiyama N, Mizuno T, Suzuki M, Takagi S 2001 Jpn. J. Appl. Phys. 140 2866

    [20]

    Shimura T, Shimizu M, Horiuchi S, Watanabe H, Yasutake K, Umeno M 2006 Appl. Phys. Lett. 89 111923

    [21]

    Di Z F, Zhang M, Liu W L, Zhu M, Lin C L, Chu P K 2005 Mater. Sci. Eng. B 124-125 153

    [22]

    Groenen J, Carles R, Christiansen S, Albrecht M, Dorsch W, Strunk H P, Wawra H, Wagner G 1997 Appl. Phys. Lett. 71 3856

    [23]

    Sheng H, Jiang Z M, Lu F, Huang D M 2004 Silicon-Germanium Superlattices and Low Dimensional Quantum Structures (Shanghai: Shanghai Science and Technology Press) pp54—55 (in Chinese) [盛 箎、蒋最敏、陆昉、黄大鸣 2004 硅锗超晶格及低维量子结构 (上海:上海科学技术出版社) 第54—55页]

    [24]

    Li C, Chen Y H, Zhou Z W, Lai H K, Chen S Y 2009 Appl. Phys. Lett. 95 251102

  • [1] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [2] 罗长维, 仇猛淋, 王广甫, 王庭顺, 赵国强, 华青松. 利用离子激发发光研究ZnO离子注入和退火处理的缺陷变化. 物理学报, 2020, 69(10): 102901. doi: 10.7498/aps.69.20200029
    [3] 李明阳, 张雷敏, 吕沙沙, 李正操. 离子辐照和氧化对IG-110核级石墨中的点缺陷的影响. 物理学报, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [4] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [5] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [6] 玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 曾骏哲. In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究. 物理学报, 2015, 64(15): 154217. doi: 10.7498/aps.64.154217
    [7] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [8] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [9] 朱剑云, 刘璐, 李育强, 徐静平. 退火工艺对LaTiON和HfLaON存储层金属-氧化物-氮化物-氧化物-硅存储器特性的影响. 物理学报, 2013, 62(3): 038501. doi: 10.7498/aps.62.038501
    [10] 邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟. ZnO:Sb薄膜的光致发光及拉曼特性研究. 物理学报, 2012, 61(24): 247701. doi: 10.7498/aps.61.247701
    [11] 张磊, 叶辉, 皇甫幼睿, 刘旭. 氧化硅缓冲层对于退火形成锗量子点的作用研究. 物理学报, 2011, 60(7): 076103. doi: 10.7498/aps.60.076103
    [12] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [13] 张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀. 碳化硅中氦离子高温注入引入的缺陷及其退火行为的光谱研究. 物理学报, 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [14] 周丽宏, 张崇宏, 李炳生, 杨义涛, 宋 银. 注入Ar+的蓝宝石晶体退火前后光致发光谱的分析. 物理学报, 2008, 57(4): 2562-2566. doi: 10.7498/aps.57.2562
    [15] 谢自力, 张 荣, 修向前, 刘 斌, 朱顺明, 赵 红, 濮 林, 韩 平, 江若琏, 施 毅, 郑有炓. InN薄膜的氧化特性研究. 物理学报, 2007, 56(2): 1032-1035. doi: 10.7498/aps.56.1032
    [16] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究. 物理学报, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [17] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [18] 朋兴平, 兰 伟, 谭永胜, 佟立国, 王印月. Cu掺杂氧化锌薄膜的发光特性研究. 物理学报, 2004, 53(8): 2705-2709. doi: 10.7498/aps.53.2705
    [19] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光. 物理学报, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [20] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
计量
  • 文章访问数:  5736
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-23
  • 修回日期:  2010-10-11
  • 刊出日期:  2011-07-15

循环氧化/退火制备GeOI薄膜材料及其性质研究

  • 1. 厦门大学物理系,半导体光子学研究中心,厦门 361005
    基金项目: 国家重点基础研究发展计划(批准号:2007CB613404)和国家自然科学基金(批准号:61036003和60837001)资助的课题.

摘要: 采用超高真空化学气相淀积系统在SOI(绝缘体上硅)衬底上生长了Si0.82Ge0.18外延层,通过循环氧化/退火工艺,制备出Ge组分从0.24到1的绝缘体上锗硅(SGOI)材料.采用高分辨透射电镜、拉曼散射光谱和光致发光谱表征了其结构及光学性质,对氧化过程中SiGe层中的Ge组分和应变的演变进行了分析.最后制备出11 nm厚的绝缘体上Ge材料(GeOI),具有完整的晶格结构和平整的界面.室温下观测到绝缘体上Ge直接带跃迁光致发光,发光峰值位于1540 nm,发光

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回