搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响

顾珊珊 胡晓君 黄凯

引用本文:
Citation:

退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响

顾珊珊, 胡晓君, 黄凯

Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films

Gu Shan-Shan, Hu Xiao-Jun, Huang Kai
PDF
导出引用
  • 采用热丝化学气相沉积法制备硼掺杂纳米金刚石 (BDND) 薄膜, 并对薄膜进行真空退火处理, 系统研究退火温度对BDND薄膜微结构和电学性能的影响. Hall效应测试结果表明掺B浓度为5000 ppm (NHB) 的样品的电阻率较掺B浓度为500 ppm (NLB) 的样品的低, 载流子浓度高, Hall迁移率下降. 1000 ℃退火后, NLB和NHB 样品的迁移率分别为53.3和39.3 cm2·V-1·s-1, 薄膜的迁移率较未退火样品提高, 电阻率降低. 高分辨透射电镜、紫外和可见光拉曼光谱测试结果表明, NLB样品的金刚石相含量较NHB样品高, 高的硼掺杂浓度使薄膜中的金刚石晶粒产生较大的晶格畸变. 经1000 ℃退火后, NLB和NHB薄膜中纳米金刚石相含量较未退火时增大, 说明薄膜中部分非晶碳转变为金刚石相, 为晶界上B扩散到纳米金刚石晶粒中提供了机会, 使得纳米金刚石晶粒中B浓度提高, 增强纳米金刚石晶粒的导电能力, 提高薄膜电学性能. 1000 ℃退火能够恢复纳米金刚石晶粒的晶格完整性, 减小由掺杂引起的内应力, 从而提高薄膜的电学性能. 可见光Raman光谱测试结果表明, 1000℃退火后, Raman谱图中反式聚乙炔 (TPA) 的1140 cm-1峰消失, 此时薄膜电学性能较好, 说明TPA减少有利于提高薄膜的电学性能. 退火后金刚石相含量的增大、金刚石晶粒的完整性提高及TPA含量的大量减少有利于提高薄膜的电学性能.
    Annealing of different temperatures was performed on boron-doped nanocrystalline diamond (BDND) films synthesized by hot filament chemical vapor deposition (HFCVD). Effects of annealing temperature on the microstructural and electrical properties of BDND films were systematically investigated. The Hall-effect results show that smaller resistivity and Hall mobility values as well as higher carrier concentration exist in the 5000 ppm boron-doped nanocrystalline diamond film (NHB) as compared with those in 500 ppm boron-doped nanocrystalline diamond film (NLB). After 1000 ℃ annealing, the Hall mobility of NLB and NHB samples were 53.3 and 39.3 cm2·V-1·s-1, respectively, indicating that annealing increases the Hall mobility and decreases the resistivity of the films. HRTEM, UV, and visible Raman spectroscopic results show that the content of diamond phase in NLB samples is larger than that in NHB samples because higher B-doping concentration results in a greater lattice distortion. After 1000 ℃ annealing, the amount of nano-diamond phase of NLB and NHB samples both increase, indicating that a part of the amorphous carbon transforms into the diamond phase. This provides an opportunity for boron atoms located at the grain boundaries to diffuse into the nano-diamond grains, which increases the concentration of boron in the nano-diamond grains and improves the conductivity of nanocrystalline diamond grains. It is observed that 1000 ℃ annealing treatment is beneficial for lattice perfection of BDND films and reduction of internal stress caused by doping, so that the electrical properties of BDND films are improved. Visible Raman spectra show that the trans-polyacetylene (TPA) peak (1140 cm-1) disappears after 1000 ℃ annealing, which improves the electrical properties of BDND films. It is suggested that the larger the diamond phase content, the better lattice perfection and the less the TPA amount in the annealed BDND samples that prefer to improve the electrical properties of BDND films.
    • 基金项目: 国家自然科学基金 (批准号: 50972129, 50602039) 和浙江省钱江人才计划 (批准号: 2010R10026) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129, 50602039), and the Qianjiang Talent Project of Zhejiang Province of China (Grant No. 2010R10026).
    [1]

    Gracio J J, Fan Q H, Madaleno J C 2010 J. Phys. D: Appl. Phys. 43 374017

    [2]

    Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmller D 2006 Appl. Phys. Lett. 88 101908

    [3]

    Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 物理学报 51 1870]

    [4]

    Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211

    [5]

    Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369

    [6]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [7]

    Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179

    [8]

    Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469

    [9]

    Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856

    [10]

    Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Rel. Mater. 17 1080

    [11]

    Butler J E, Surnant A V 2008 Chem. Vap. Deposition 14 145

    [12]

    Gajewski W, Achatz P, Williams O A, Haenen K, Bustarret E, Stutzmann M, Garrido J A 2009 Phys. Rev. B 79 045206

    [13]

    Nesladek M, Mares J J, Tromson D, Mer C, Bergonzo P, Hubik P, Kristofik J 2006 Sci. Tech. Adv. Mater. 7 S41

    [14]

    Nesládek M, Tromson D, Mer C, Bergonzo P 2006 Appl. Phys. Lett. 88 232111

    [15]

    Souza F A, Azevedo A F, Giles C, Saito E, Baldan M R, Ferreira N G 2012 Chem. Vap. Deposition 18 159

    [16]

    Williams O A, Nesládek M 2006 Phys. Stat. Sol. (a) 13 3375

    [17]

    May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105

    [18]

    Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879

    [19]

    Li H, Sheldon B W, Kothari A, Ban Z, Walden B L 2006 J. Appl .Phys. 100 094309

    [20]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410]

    [21]

    Hu H, Hu X J, Bai B W, Chen X H, 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 物理学报 61 148101]

    [22]

    Pearson G L, Bardeen J 1949 Phys.Rev. 75 865

    [23]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [24]

    Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119

    [25]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl .Phys. 109 053524

    [26]

    Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669

    [27]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [28]

    Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753

    [29]

    Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419

    [30]

    Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Gnther B 2003 Diam. Relat. Mater. 12 268

    [31]

    Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486

    [32]

    Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191

  • [1]

    Gracio J J, Fan Q H, Madaleno J C 2010 J. Phys. D: Appl. Phys. 43 374017

    [2]

    Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmller D 2006 Appl. Phys. Lett. 88 101908

    [3]

    Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 物理学报 51 1870]

    [4]

    Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211

    [5]

    Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369

    [6]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [7]

    Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179

    [8]

    Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469

    [9]

    Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856

    [10]

    Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Rel. Mater. 17 1080

    [11]

    Butler J E, Surnant A V 2008 Chem. Vap. Deposition 14 145

    [12]

    Gajewski W, Achatz P, Williams O A, Haenen K, Bustarret E, Stutzmann M, Garrido J A 2009 Phys. Rev. B 79 045206

    [13]

    Nesladek M, Mares J J, Tromson D, Mer C, Bergonzo P, Hubik P, Kristofik J 2006 Sci. Tech. Adv. Mater. 7 S41

    [14]

    Nesládek M, Tromson D, Mer C, Bergonzo P 2006 Appl. Phys. Lett. 88 232111

    [15]

    Souza F A, Azevedo A F, Giles C, Saito E, Baldan M R, Ferreira N G 2012 Chem. Vap. Deposition 18 159

    [16]

    Williams O A, Nesládek M 2006 Phys. Stat. Sol. (a) 13 3375

    [17]

    May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105

    [18]

    Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879

    [19]

    Li H, Sheldon B W, Kothari A, Ban Z, Walden B L 2006 J. Appl .Phys. 100 094309

    [20]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410]

    [21]

    Hu H, Hu X J, Bai B W, Chen X H, 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 物理学报 61 148101]

    [22]

    Pearson G L, Bardeen J 1949 Phys.Rev. 75 865

    [23]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [24]

    Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119

    [25]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl .Phys. 109 053524

    [26]

    Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669

    [27]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [28]

    Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753

    [29]

    Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419

    [30]

    Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Gnther B 2003 Diam. Relat. Mater. 12 268

    [31]

    Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486

    [32]

    Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191

计量
  • 文章访问数:  9911
  • PDF下载量:  941
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-18
  • 修回日期:  2013-01-07
  • 刊出日期:  2013-06-05

退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响

  • 1. 浙江工业大学化学工程与材料学院, 杭州 310014
    基金项目: 国家自然科学基金 (批准号: 50972129, 50602039) 和浙江省钱江人才计划 (批准号: 2010R10026) 资助的课题.

摘要: 采用热丝化学气相沉积法制备硼掺杂纳米金刚石 (BDND) 薄膜, 并对薄膜进行真空退火处理, 系统研究退火温度对BDND薄膜微结构和电学性能的影响. Hall效应测试结果表明掺B浓度为5000 ppm (NHB) 的样品的电阻率较掺B浓度为500 ppm (NLB) 的样品的低, 载流子浓度高, Hall迁移率下降. 1000 ℃退火后, NLB和NHB 样品的迁移率分别为53.3和39.3 cm2·V-1·s-1, 薄膜的迁移率较未退火样品提高, 电阻率降低. 高分辨透射电镜、紫外和可见光拉曼光谱测试结果表明, NLB样品的金刚石相含量较NHB样品高, 高的硼掺杂浓度使薄膜中的金刚石晶粒产生较大的晶格畸变. 经1000 ℃退火后, NLB和NHB薄膜中纳米金刚石相含量较未退火时增大, 说明薄膜中部分非晶碳转变为金刚石相, 为晶界上B扩散到纳米金刚石晶粒中提供了机会, 使得纳米金刚石晶粒中B浓度提高, 增强纳米金刚石晶粒的导电能力, 提高薄膜电学性能. 1000 ℃退火能够恢复纳米金刚石晶粒的晶格完整性, 减小由掺杂引起的内应力, 从而提高薄膜的电学性能. 可见光Raman光谱测试结果表明, 1000℃退火后, Raman谱图中反式聚乙炔 (TPA) 的1140 cm-1峰消失, 此时薄膜电学性能较好, 说明TPA减少有利于提高薄膜的电学性能. 退火后金刚石相含量的增大、金刚石晶粒的完整性提高及TPA含量的大量减少有利于提高薄膜的电学性能.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回